forked from mindspore-Ecosystem/mindspore
support len of a Tensor
This commit is contained in:
parent
ba5f57babf
commit
1a7c161e73
|
@ -291,9 +291,17 @@ AbstractBasePtr InferImplListLen(const AnalysisEnginePtr &, const PrimitivePtr &
|
|||
return InferTupleOrListOrDictLen<AbstractList>(primitive->name(), args_spec_list);
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplArrayLen(const AnalysisEnginePtr &, const PrimitivePtr &,
|
||||
AbstractBasePtr InferImplArrayLen(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
return std::make_shared<AbstractScalar>(kAnyValue, kInt32);
|
||||
const std::string op_name = primitive->name();
|
||||
CheckArgsSize(op_name, args_spec_list, 1);
|
||||
auto arg_abs = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
|
||||
auto shape = arg_abs->BuildShape()->cast<ShapePtr>();
|
||||
MS_EXCEPTION_IF_NULL(shape);
|
||||
if (shape->shape().empty()) {
|
||||
MS_EXCEPTION(TypeError) << "Not support len of a 0-D tensor.";
|
||||
}
|
||||
return std::make_shared<AbstractScalar>(shape->shape()[0]);
|
||||
}
|
||||
} // namespace abstract
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test len of array"""
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
def test_len_a_3D_tensor():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x, y):
|
||||
return len(x), len(y)
|
||||
|
||||
net = Net()
|
||||
x = Tensor(np.ones((5, 6, 7)))
|
||||
y = Tensor(np.ones((100, 6, 7)))
|
||||
ret = net(x, y)
|
||||
assert ret == (len(x), len(y)) == (5, 100)
|
||||
|
||||
|
||||
def test_len_a_0D_tensor():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
return len(x)
|
||||
|
||||
net = Net()
|
||||
x = Tensor(np.array(100))
|
||||
with pytest.raises(TypeError) as err:
|
||||
_ = net(x)
|
||||
assert "Not support len of a 0-D tensor." in str(err.value)
|
Loading…
Reference in New Issue