support len of a Tensor

This commit is contained in:
buxue 2020-12-26 17:02:25 +08:00
parent ba5f57babf
commit 1a7c161e73
2 changed files with 63 additions and 2 deletions

View File

@ -291,9 +291,17 @@ AbstractBasePtr InferImplListLen(const AnalysisEnginePtr &, const PrimitivePtr &
return InferTupleOrListOrDictLen<AbstractList>(primitive->name(), args_spec_list);
}
AbstractBasePtr InferImplArrayLen(const AnalysisEnginePtr &, const PrimitivePtr &,
AbstractBasePtr InferImplArrayLen(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
return std::make_shared<AbstractScalar>(kAnyValue, kInt32);
const std::string op_name = primitive->name();
CheckArgsSize(op_name, args_spec_list, 1);
auto arg_abs = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
auto shape = arg_abs->BuildShape()->cast<ShapePtr>();
MS_EXCEPTION_IF_NULL(shape);
if (shape->shape().empty()) {
MS_EXCEPTION(TypeError) << "Not support len of a 0-D tensor.";
}
return std::make_shared<AbstractScalar>(shape->shape()[0]);
}
} // namespace abstract
} // namespace mindspore

View File

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test len of array"""
import pytest
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
context.set_context(mode=context.GRAPH_MODE)
def test_len_a_3D_tensor():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x, y):
return len(x), len(y)
net = Net()
x = Tensor(np.ones((5, 6, 7)))
y = Tensor(np.ones((100, 6, 7)))
ret = net(x, y)
assert ret == (len(x), len(y)) == (5, 100)
def test_len_a_0D_tensor():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x):
return len(x)
net = Net()
x = Tensor(np.array(100))
with pytest.raises(TypeError) as err:
_ = net(x)
assert "Not support len of a 0-D tensor." in str(err.value)