forked from mindspore-Ecosystem/mindspore
!48276 [Golden-Stick] remove useless quant testcase
Merge pull request !48276 from yangruoqi713/master
This commit is contained in:
commit
14ba0b2030
|
@ -1,58 +0,0 @@
|
||||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""
|
|
||||||
train Conv2dBnFoldQuant Cell
|
|
||||||
"""
|
|
||||||
|
|
||||||
import pytest
|
|
||||||
import numpy as np
|
|
||||||
from mindspore import nn
|
|
||||||
from mindspore import context
|
|
||||||
from mindspore import Tensor
|
|
||||||
from mindspore.common import set_seed
|
|
||||||
|
|
||||||
class Net(nn.Cell):
|
|
||||||
def __init__(self):
|
|
||||||
super(Net, self).__init__()
|
|
||||||
self.conv = nn.Conv2dBnFoldQuant(2, 3, kernel_size=(2, 2), stride=(1, 1), pad_mode='valid')
|
|
||||||
def construct(self, x):
|
|
||||||
return self.conv(x)
|
|
||||||
|
|
||||||
|
|
||||||
def test_conv2d_bn_fold_quant():
|
|
||||||
set_seed(1)
|
|
||||||
network = Net()
|
|
||||||
inputs = Tensor(np.ones([1, 2, 5, 5]).astype(np.float32))
|
|
||||||
label = Tensor(np.ones([1, 3, 4, 4]).astype(np.int32))
|
|
||||||
opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), learning_rate=0.1, momentum=0.9)
|
|
||||||
loss = nn.MSELoss()
|
|
||||||
net_with_loss = nn.WithLossCell(network, loss)
|
|
||||||
train_network = nn.TrainOneStepCell(net_with_loss, opt)
|
|
||||||
train_network.set_train()
|
|
||||||
out_loss = train_network(inputs, label)
|
|
||||||
print("------------------", out_loss.asnumpy())
|
|
||||||
expect_loss = np.array([0.940427])
|
|
||||||
error = np.array([0.1])
|
|
||||||
diff = out_loss.asnumpy() - expect_loss
|
|
||||||
assert np.all(abs(diff) < error)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level1
|
|
||||||
@pytest.mark.platform_arm_ascend_training
|
|
||||||
@pytest.mark.platform_x86_ascend_training
|
|
||||||
@pytest.mark.env_onecard
|
|
||||||
def test_conv2d_bn_fold_quant_ascend():
|
|
||||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
||||||
test_conv2d_bn_fold_quant()
|
|
Loading…
Reference in New Issue