remove custom akg test

This commit is contained in:
huangxinjing 2023-03-05 13:25:20 +08:00
parent fc7346ffad
commit 0969fd6240
1 changed files with 0 additions and 295 deletions

View File

@ -1,295 +0,0 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import platform
import pytest
import numpy as np
from mindspore import context, Tensor
from mindspore.nn import Cell
import mindspore.ops as ops
from mindspore.ops import kernel
@kernel
def dtype_and_cast_example(a, b):
"""
test function for dtype and cast in Hybrid DSL
"""
d = allocate(a.shape, "float16")
c = output_tensor(a.shape, "float16")
for i0 in range(a.shape[0]):
for i1 in range(a.shape[1]):
d[i0, i1] = float16(1.0)
c[i0, i1] = d[i0, i1] + float16(a[i0, i1])
c[i0, i1] = c[i0, i1] * float16(b[i0, i1])
return c
@kernel
def allocate_and_math_intrin_example(a, b):
"""
test function for allocate and math function in Hybrid DSL
"""
d = allocate(a.shape, a.dtype)
c = output_tensor(a.shape, a.dtype)
for i0 in range(a.shape[0]):
for i1 in range(b.shape[1]):
d[i0, i1] = abs(a[i0, i1])
c[i0, i1] = d[i0, i1] + b[i0, i1]
return c
@kernel
def grid_example(a, b):
"""
test function for grid in Hybrid DSL
"""
c = output_tensor(a.shape, a.dtype)
for arg in grid(a.shape):
c[arg] = a[arg] + b[arg[0], arg[1]]
return c
class TestMsHybridDSL(Cell):
"""Net definition"""
def __init__(self, func, func_type, out_shape=None, out_dtype=None):
super(TestMsHybridDSL, self).__init__()
self.program = ops.Custom(func, out_shape=out_shape, out_dtype=out_dtype, func_type=func_type)
def construct(self, x, y):
return self.program(x, y)
def ms_kernel_cast_with_infer():
"""
test case Custom Op with functions written in Hybrid DSL and infer functions
"""
np.random.seed(10)
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
test = TestMsHybridDSL(dtype_and_cast_example, "hybrid", lambda x, _: x, lambda x, _: x)
output = test(Tensor(input_x), Tensor(input_y))
expect = dtype_and_cast_example(input_x, input_y)
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
if not compare_res:
raise ValueError("Precision error, compare result: {}".format(compare_res))
def ms_kernel_cast_without_infer():
"""
test case Custom Op with functions written in Hybrid DSL and without infer functions
"""
np.random.seed(10)
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
test = TestMsHybridDSL(dtype_and_cast_example, "hybrid")
output = test(Tensor(input_x), Tensor(input_y))
expect = dtype_and_cast_example(input_x, input_y)
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
if not compare_res:
raise ValueError("Precision error, compare result: {}".format(compare_res))
def ms_kernel_cast_pyfunc():
"""
test case Custom Op with functions written in Hybrid DSL and func_type pyfunc
"""
np.random.seed(10)
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
test = TestMsHybridDSL(dtype_and_cast_example, "pyfunc", lambda x, _: x, lambda x, _: x)
output = test(Tensor(input_x), Tensor(input_y))
expect = dtype_and_cast_example(input_x, input_y)
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
if not compare_res:
raise ValueError("Precision error, compare result: {}".format(compare_res))
def ms_kernel_allocate():
"""
test case Custom Op with functions written in Hybrid DSL about math functions and allocate
"""
np.random.seed(10)
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
test = TestMsHybridDSL(allocate_and_math_intrin_example, "hybrid", lambda x, _: x, lambda x, _: x)
output = test(Tensor(input_x), Tensor(input_y))
expect = allocate_and_math_intrin_example(input_x, input_y)
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
if not compare_res:
raise ValueError("Precision error, compare result: {}".format(compare_res))
def ms_kernel_allocate_cpu():
"""
test case Custom Op with functions written in Hybrid DSL about math functions and allocate
for cpu, we test fp32 to avoid env diff in support of data types.
"""
np.random.seed(10)
input_x = np.ones((4, 4)).astype(np.float32)
input_y = np.ones((4, 4)).astype(np.float32)
test = TestMsHybridDSL(allocate_and_math_intrin_example, "hybrid", lambda x, _: x, lambda x, _: x)
output = test(Tensor(input_x), Tensor(input_y))
expect = allocate_and_math_intrin_example(input_x, input_y)
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
if not compare_res:
raise ValueError("Precision error, compare result: {}".format(compare_res))
def ms_kernel_grid():
"""
test case Custom Op with functions written in Hybrid DSL about grid
"""
np.random.seed(10)
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
test = TestMsHybridDSL(grid_example, "hybrid", lambda x, _: x, lambda x, _: x)
output = test(Tensor(input_x), Tensor(input_y))
expect = grid_example(input_x, input_y)
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
if not compare_res:
raise ValueError("Precision error, compare result: {}".format(compare_res))
def ms_kernel_grid_cpu():
"""
test case Custom Op with functions written in Hybrid DSL about grid
"""
np.random.seed(10)
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float32)
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float32)
test = TestMsHybridDSL(grid_example, "hybrid", lambda x, _: x, lambda x, _: x)
output = test(Tensor(input_x), Tensor(input_y))
expect = grid_example(input_x, input_y)
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
if not compare_res:
raise ValueError("Precision error, compare result: {}".format(compare_res))
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_ms_kernel_ascend_graph_mode():
"""
Feature: test case for Custom op with func_type="kernel"
Description: ascend test case, Python DSL with kernel decorator in GRAPH_MODE.
Expectation: the result match with numpy result
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
ms_kernel_cast_pyfunc()
ms_kernel_cast_with_infer()
ms_kernel_cast_without_infer()
ms_kernel_allocate()
ms_kernel_grid()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_ms_kernel_ascend_pynative_mode():
"""
Feature: test case for Custom op with func_type="kernel"
Description: ascend test case, Python DSL with kernel decorator in PYNATIVE_MODE.
Expectation: the result match with numpy result
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
ms_kernel_cast_pyfunc()
ms_kernel_cast_with_infer()
ms_kernel_cast_without_infer()
ms_kernel_allocate()
ms_kernel_grid()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_ms_kernel_gpu_graph_mode():
"""
Feature: test case for Custom op with func_type="kernel"
Description: gpu test case, Python DSL with kernel decorator in GRAPH_MODE.
Expectation: the result match with numpy result
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
ms_kernel_cast_pyfunc()
ms_kernel_cast_with_infer()
ms_kernel_cast_without_infer()
ms_kernel_allocate()
ms_kernel_grid()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_ms_kernel_gpu_pynative_mode():
"""
Feature: test case for Custom op with func_type="kernel"
Description: gpu test case, Python DSL with kernel decorator in PYNATIVE_MODE.
Expectation: the result match with numpy result
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
ms_kernel_cast_pyfunc()
ms_kernel_cast_with_infer()
ms_kernel_cast_without_infer()
ms_kernel_allocate()
ms_kernel_grid()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ms_kernel_cpu_graph_mode():
"""
Feature: test case for Custom op with func_type="kernel"
Description: cpu test case, Python DSL with kernel decorator in GRAPH_MODE.
Expectation: the result match with numpy result
"""
if platform.system().lower() in {"windows", "darwin"}:
# skip window and mac, same for pynative below
pass
else:
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
ms_kernel_allocate_cpu()
ms_kernel_grid_cpu()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ms_kernel_cpu_pynative_mode():
"""
Feature: test case for Custom op with func_type="kernel"
Description: cpu test case, Python DSL with kernel decorator in PYNATIVE_MODE.
Expectation: the result match with numpy result
"""
if platform.system().lower() in {"windows", "darwin"}:
pass
else:
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
ms_kernel_allocate_cpu()
ms_kernel_grid_cpu()