forked from mindspore-Ecosystem/mindspore
commit
0830ad932b
|
@ -249,7 +249,7 @@ class LayerNorm(Cell):
|
|||
'he_uniform', etc. Default: 'zeros'.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of 'input_x' is input_shape = `(x_1, x_2, ..., x_R)`,
|
||||
- **input_x** (Tensor) - The shape of 'input_x' is input_shape = :math:`(x_1, x_2, ..., x_R)`,
|
||||
and `input_shape[begin_norm_axis:]` is equal to `normalized_shape`.
|
||||
|
||||
Outputs:
|
||||
|
|
|
@ -1790,7 +1790,7 @@ class ScatterNd(PrimitiveWithInfer):
|
|||
|
||||
|
||||
class ResizeNearestNeighbor(PrimitiveWithInfer):
|
||||
"""
|
||||
r"""
|
||||
Resize the input tensor by using nearest neighbor algorithm.
|
||||
|
||||
Resize input tensor to given size by using nearest neighbor algorithm. The nearest
|
||||
|
@ -1806,7 +1806,7 @@ class ResizeNearestNeighbor(PrimitiveWithInfer):
|
|||
- **input_x** (Tensor) - The input tensor. The shape of the tensor is :math:`(N, C, H, W)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape of the output tensor is :math:`(N, NEW_C, NEW_H, W)`.
|
||||
Tensor, the shape of the output tensor is :math:`(N, NEW\_C, NEW\_H, W)`.
|
||||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
||||
|
|
Loading…
Reference in New Issue