optimize fastrcnn training process

This commit is contained in:
yanghaitao1 2020-06-27 01:44:13 -04:00
parent b0a10c26a4
commit 00f7bdb40b
1 changed files with 14 additions and 18 deletions

View File

@ -318,10 +318,6 @@ def preprocess_fn(image, box, is_training):
else:
input_data = resize_column(*input_data)
photo = (np.random.rand() < config.photo_ratio)
if photo:
input_data = photo_crop_column(*input_data)
input_data = image_bgr_rgb(*input_data)
output_data = input_data
@ -432,19 +428,19 @@ def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="fast
writer.write_raw_data([row])
writer.commit()
def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, device_num=1, rank_id=0,
is_training=True, num_parallel_workers=8):
is_training=True, num_parallel_workers=4):
"""Creatr FasterRcnn dataset with MindDataset."""
ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank_id,
num_parallel_workers=num_parallel_workers, shuffle=is_training)
num_parallel_workers=1, shuffle=is_training)
decode = C.Decode()
ds = ds.map(input_columns=["image"], operations=decode)
ds = ds.map(input_columns=["image"], operations=decode, num_parallel_workers=1)
compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training))
hwc_to_chw = C.HWC2CHW()
normalize_op = C.Normalize((123.675, 116.28, 103.53), (58.395, 57.12, 57.375))
horizontally_op = C.RandomHorizontalFlip(1)
type_cast0 = CC.TypeCast(mstype.float32)
type_cast1 = CC.TypeCast(mstype.float16)
type_cast2 = CC.TypeCast(mstype.int32)
type_cast3 = CC.TypeCast(mstype.bool_)
@ -453,17 +449,18 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "image_shape", "box", "label", "valid_num"],
columns_order=["image", "image_shape", "box", "label", "valid_num"],
operations=compose_map_func, num_parallel_workers=4)
ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0],
num_parallel_workers=num_parallel_workers)
operations=compose_map_func, num_parallel_workers=num_parallel_workers)
flip = (np.random.rand() < config.flip_ratio)
if flip:
ds = ds.map(input_columns=["image"], operations=[horizontally_op],
num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=[normalize_op, horizontally_op, hwc_to_chw, type_cast1],
num_parallel_workers=24)
ds = ds.map(input_columns=["image", "image_shape", "box", "label", "valid_num"],
operations=flipped_generation, num_parallel_workers=4)
operations=flipped_generation, num_parallel_workers=num_parallel_workers)
else:
ds = ds.map(input_columns=["image"], operations=[normalize_op, hwc_to_chw, type_cast1],
num_parallel_workers=24)
else:
ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "image_shape", "box", "label", "valid_num"],
@ -471,11 +468,10 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi
operations=compose_map_func,
num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0],
num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=[normalize_op, hwc_to_chw, type_cast1],
num_parallel_workers=24)
# transpose_column from python to c
ds = ds.map(input_columns=["image"], operations=[hwc_to_chw, type_cast1])
ds = ds.map(input_columns=["image_shape"], operations=[type_cast1])
ds = ds.map(input_columns=["box"], operations=[type_cast1])
ds = ds.map(input_columns=["label"], operations=[type_cast2])