mindspore/include/api/model.h

434 lines
18 KiB
C
Raw Normal View History

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INCLUDE_API_MODEL_H
#define MINDSPORE_INCLUDE_API_MODEL_H
#include <string>
#include <vector>
#include <map>
#include <memory>
2021-01-26 17:06:34 +08:00
#include <utility>
#include "include/api/status.h"
#include "include/api/types.h"
#include "include/api/graph.h"
#include "include/api/context.h"
2021-07-09 18:07:51 +08:00
#include "include/api/callback/callback.h"
#include "include/api/cell.h"
2021-07-09 18:07:51 +08:00
#include "include/api/cfg.h"
#include "include/api/dual_abi_helper.h"
namespace mindspore {
class ModelImpl;
2021-07-09 18:07:51 +08:00
class Metrics;
2022-04-14 20:22:36 +08:00
class Net;
class Node;
class Expr;
2021-07-09 18:07:51 +08:00
namespace dataset {
class Dataset;
} // namespace dataset
/// \brief The Model class is used to define a MindSpore model, facilitating computational graph management.
class MS_API Model {
public:
Model();
~Model();
Model(const Model &) = delete;
void operator=(const Model &) = delete;
2022-08-10 15:51:35 +08:00
/// \brief Build a model from model buffer so that it can run on a device.
2022-04-02 14:39:37 +08:00
///
/// \param[in] model_data Define the buffer read from a model file.
/// \param[in] data_size Define bytes number of model buffer.
/// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
/// ModelType::kMindIR is valid for Lite.
/// \param[in] model_context Define the context used to store options during execution.
///
/// \return Status.
Status Build(const void *model_data, size_t data_size, ModelType model_type,
const std::shared_ptr<Context> &model_context = nullptr);
2022-08-10 15:51:35 +08:00
/// \brief Load and build a model from model buffer so that it can run on a device.
2022-04-02 14:39:37 +08:00
///
/// \param[in] model_path Define the model path.
/// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
/// ModelType::kMindIR is valid for Lite.
/// \param[in] model_context Define the context used to store options during execution.
///
/// \return Status.
2022-06-24 14:28:36 +08:00
inline Status Build(const std::string &model_path, ModelType model_type,
const std::shared_ptr<Context> &model_context = nullptr);
2022-04-02 14:39:37 +08:00
2022-08-10 15:51:35 +08:00
/// \brief Build a model from model buffer so that it can run on a device.
2022-04-02 14:39:37 +08:00
///
/// \param[in] model_data Define the buffer read from a model file.
/// \param[in] data_size Define bytes number of model buffer.
/// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
/// ModelType::kMindIR is valid for Lite.
/// \param[in] model_context Define the context used to store options during execution.
/// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16.
/// \param[in] dec_mode Define the decryption mode. Options: AES-GCM.
/// \param[in] cropto_lib_path Define the openssl library path.
///
/// \return Status.
2022-07-20 22:36:12 +08:00
inline Status Build(const void *model_data, size_t data_size, ModelType model_type,
const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
const std::string &cropto_lib_path);
2022-04-02 14:39:37 +08:00
2022-08-10 15:51:35 +08:00
/// \brief Load and build a model from model buffer so that it can run on a device.
2022-04-02 14:39:37 +08:00
///
/// \param[in] model_path Define the model path.
/// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
/// ModelType::kMindIR is valid for Lite.
/// \param[in] model_context Define the context used to store options during execution.
/// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16.
/// \param[in] dec_mode Define the decryption mode. Options: AES-GCM.
/// \param[in] cropto_lib_path Define the openssl library path.
///
/// \return Status.
2022-06-24 14:28:36 +08:00
inline Status Build(const std::string &model_path, ModelType model_type,
const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
const std::string &cropto_lib_path);
2022-04-02 14:39:37 +08:00
2022-08-04 19:35:27 +08:00
/// \brief Build a model
///
/// \param[in] graph GraphCell is a derivative of Cell. Cell is not available currently. GraphCell can be constructed
/// from Graph, for example, model.Build(GraphCell(graph), context).
/// \param[in] model_context A context used to store options during execution.
/// \param[in] train_cfg A config used by training.
///
/// \return Status.
2021-07-09 18:07:51 +08:00
Status Build(GraphCell graph, const std::shared_ptr<Context> &model_context = nullptr,
const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
2022-04-14 20:22:36 +08:00
/// \brief Build train model
///
/// \param[in] graph A forward network
/// \param[in] optimizer An optimizer node
/// \param[in] inputs Inputs expression for the trained network (ex: input, label )
2022-08-24 17:24:49 +08:00
/// \param[in] model_context A context used to store options during execution.
2022-04-14 20:22:36 +08:00
/// \param[in] train_cfg A config used by training
/// \return Status
Status Build(GraphCell graph, Node *optimizer, std::vector<Expr *> inputs,
const std::shared_ptr<Context> &model_context, const std::shared_ptr<TrainCfg> &train_cfg);
2022-08-04 19:35:27 +08:00
/// \brief Build a Transfer Learning model where the backbone weights are fixed and the head weights are trainable
2021-12-22 00:39:40 +08:00
///
/// \param[in] backbone The static, non-learnable part of the graph
/// \param[in] head The trainable part of the graph
/// \param[in] context A context used to store options during execution
2022-04-28 15:41:34 +08:00
/// \param[in] train_cfg A config used by training
2021-12-22 00:39:40 +08:00
///
/// \return Status
Status BuildTransferLearning(GraphCell backbone, GraphCell head, const std::shared_ptr<Context> &context,
const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
2022-08-04 19:35:27 +08:00
/// \brief Resize the shapes of inputs.
///
/// \param[in] inputs A vector that includes all input tensors in order.
/// \param[in] dims Defines the new shapes of inputs, should be consistent with inputs.
///
/// \return Status.
2021-01-26 17:06:34 +08:00
Status Resize(const std::vector<MSTensor> &inputs, const std::vector<std::vector<int64_t>> &dims);
/// \brief Change the size and or content of weight tensors
///
/// \param[in] new_weights a vector of tensors with new shapes and data to use in the model
/// If data pointer is null, the data of the original tensors will be copied to the new ones
///
/// \return Status.
Status UpdateWeights(const std::vector<MSTensor> &new_weights);
/// \brief Inference model API. If use this API in train mode, it's equal to RunStep API.
///
/// \param[in] inputs A vector where model inputs are arranged in sequence.
/// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
/// \param[in] before CallBack before predict.
/// \param[in] after CallBack after predict.
///
/// \return Status.
2021-07-07 11:13:09 +08:00
Status Predict(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs,
const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
/// \brief Inference model API. If use this API in train mode, it's equal to RunStep API.
///
/// \param[in] before CallBack before predict.
/// \param[in] after CallBack after predict.
///
/// \return Status.
Status Predict(const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
/// \brief Training API. Run model by step.
2021-12-17 10:02:18 +08:00
///
2022-08-04 19:35:27 +08:00
/// \param[in] before CallBack before RunStep.
/// \param[in] after CallBack after RunStep.
2021-12-17 10:02:18 +08:00
///
/// \return Status.
Status RunStep(const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
/// \brief Inference model with preprocess in model.
2021-08-30 16:29:03 +08:00
///
/// \param[in] inputs A vector where model inputs are arranged in sequence.
2021-08-30 16:29:03 +08:00
/// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
/// \param[in] before CallBack before predict.
/// \param[in] after CallBack after predict.
///
/// \return Status.
Status PredictWithPreprocess(const std::vector<std::vector<MSTensor>> &inputs, std::vector<MSTensor> *outputs,
const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
/// \brief Apply data preprocess if it exits in model.
///
/// \param[in] inputs A vector where model inputs are arranged in sequence.
/// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
///
/// \return Status.
Status Preprocess(const std::vector<std::vector<MSTensor>> &inputs, std::vector<MSTensor> *outputs);
/// \brief Check if data preprocess exists in model.
/// \return true if data preprocess exists.
bool HasPreprocess();
2021-08-30 16:29:03 +08:00
2021-08-19 09:17:01 +08:00
/// \brief Load config file.
///
/// \param[in] config_path config file path.
///
/// \return Status.
2021-09-18 10:46:46 +08:00
inline Status LoadConfig(const std::string &config_path);
2021-08-19 09:17:01 +08:00
/// \brief Update config.
///
/// \param[in] section define the config section.
/// \param[in] config define the config will be updated.
///
/// \return Status.
inline Status UpdateConfig(const std::string &section, const std::pair<std::string, std::string> &config);
/// \brief Obtains all input tensors of the model.
///
/// \return The vector that includes all input tensors.
2021-01-26 17:06:34 +08:00
std::vector<MSTensor> GetInputs();
/// \brief Obtains the input tensor of the model by name.
///
/// \return The input tensor with the given name, if the name is not found, an invalid tensor is returned.
inline MSTensor GetInputByTensorName(const std::string &tensor_name);
2022-08-04 19:35:27 +08:00
/// \brief Obtain all gradient tensors of the model.
2021-09-01 23:24:32 +08:00
///
/// \return The vector that includes all gradient tensors.
std::vector<MSTensor> GetGradients() const;
2022-08-04 19:35:27 +08:00
/// \brief Update gradient tensors of the model.
2021-09-01 23:24:32 +08:00
///
2022-04-28 15:41:34 +08:00
/// \param[in] gradients A vector new gradients.
2022-05-20 17:32:24 +08:00
///
2021-09-01 23:24:32 +08:00
/// \return Status of operation
Status ApplyGradients(const std::vector<MSTensor> &gradients);
2022-08-04 19:35:27 +08:00
/// \brief Obtain all weights tensors of the model.
2021-12-17 10:02:18 +08:00
///
/// \return The vector that includes all weights tensors.
2021-12-17 10:02:18 +08:00
std::vector<MSTensor> GetFeatureMaps() const;
/// \brief Obtain all trainable parameters of the model optimizers.
///
/// \return The vector that includes all trainable parameters.
std::vector<MSTensor> GetTrainableParams() const;
2022-08-04 19:35:27 +08:00
/// \brief Update weights tensors of the model.
2021-12-17 10:02:18 +08:00
///
2022-04-28 15:41:34 +08:00
/// \param[in] new_weights A vector new weights.
2022-05-20 17:32:24 +08:00
///
2021-12-17 10:02:18 +08:00
/// \return Status of operation
Status UpdateFeatureMaps(const std::vector<MSTensor> &new_weights);
2022-08-04 19:35:27 +08:00
/// \brief Obtain optimizer params tensors of the model.
2021-09-01 23:24:32 +08:00
///
/// \return The vector that includes all params tensors.
std::vector<MSTensor> GetOptimizerParams() const;
2022-08-04 19:35:27 +08:00
/// \brief Update the optimizer parameters.
2021-09-01 23:24:32 +08:00
///
2022-04-28 15:41:34 +08:00
/// \param[in] params A vector new optimizer params.
2022-05-20 17:32:24 +08:00
///
/// \return Status of operation.
2021-09-01 23:24:32 +08:00
Status SetOptimizerParams(const std::vector<MSTensor> &params);
2022-05-20 17:32:24 +08:00
/// \brief Setup training with virtual batches.
2021-12-22 00:39:40 +08:00
///
2022-05-20 17:32:24 +08:00
/// \param[in] virtual_batch_multiplier - virtual batch multiplier, use any number < 1 to disable.
/// \param[in] lr - learning rate to use for virtual batch, -1 for internal configuration.
/// \param[in] momentum - batch norm momentum to use for virtual batch, -1 for internal configuration.
///
/// \return Status of operation.
2021-12-22 00:39:40 +08:00
Status SetupVirtualBatch(int virtual_batch_multiplier, float lr = -1.0f, float momentum = -1.0f);
2022-08-04 19:35:27 +08:00
/// \brief Set the Learning Rate of the training.
2021-12-22 00:39:40 +08:00
///
2022-05-20 17:32:24 +08:00
/// \param[in] learning_rate to set.
///
/// \return Status of operation.
2021-12-22 00:39:40 +08:00
Status SetLearningRate(float learning_rate);
2022-08-04 19:35:27 +08:00
/// \brief Get the Learning Rate of the optimizer.
2021-12-22 00:39:40 +08:00
///
2022-05-20 17:32:24 +08:00
/// \return Learning rate. 0.0 if no optimizer was found.
2021-12-22 00:39:40 +08:00
float GetLearningRate();
2022-05-20 17:32:24 +08:00
/// \brief Initialize object with metrics.
///
/// \param[in] metrics A verctor of metrics objects.
///
/// \return 0 on success or -1 in case of error
2021-07-09 18:07:51 +08:00
Status InitMetrics(std::vector<Metrics *> metrics);
2022-05-20 17:32:24 +08:00
/// \brief Accessor to TrainLoop metric objects
///
/// \return A vector of metrics
2021-07-09 18:07:51 +08:00
std::vector<Metrics *> GetMetrics();
/// \brief Obtains all output tensors of the model.
///
/// \return The vector that includes all output tensors.
2021-01-26 17:06:34 +08:00
std::vector<MSTensor> GetOutputs();
/// \brief Obtains names of all output tensors of the model.
///
/// \return A vector that includes names of all output tensors.
inline std::vector<std::string> GetOutputTensorNames();
/// \brief Obtains the output tensor of the model by name.
///
/// \return The output tensor with the given name, if the name is not found, an invalid tensor is returned.
inline MSTensor GetOutputByTensorName(const std::string &tensor_name);
/// \brief Get output MSTensors of model by node name.
///
/// \param[in] node_name Define node name.
///
/// \note Deprecated, replace with GetOutputByTensorName
///
/// \return The vector of output MSTensor.
inline std::vector<MSTensor> GetOutputsByNodeName(const std::string &node_name);
2021-12-06 20:22:48 +08:00
/// \brief Bind GLTexture2D object to cl Memory.
///
2022-04-28 15:41:34 +08:00
/// \param[in] inputGLTexture The input GLTexture id for Model.
2021-12-06 20:22:48 +08:00
/// \param[in] outputGLTexture The output GLTexture id for Model.
///
/// \return Status of operation.
Status BindGLTexture2DMemory(const std::map<std::string, unsigned int> &inputGLTexture,
std::map<std::string, unsigned int> *outputGLTexture);
/// \brief Inference model.
///
/// \param[in] device_type Device typeoptions are kGPU, kAscend etc.
/// \param[in] model_type The type of model file, options are ModelType::kMindIR, ModelType::kOM.
///
/// \return Is supported or not.
static bool CheckModelSupport(enum DeviceType device_type, ModelType model_type);
2022-05-20 17:32:24 +08:00
/// \brief Set the model running mode.
///
/// \param[in] train True means model runs in Train Mode, otherwise Eval Mode.
///
/// \return Status of operation.
2021-07-09 18:07:51 +08:00
Status SetTrainMode(bool train);
2022-05-20 17:32:24 +08:00
/// \brief Get the model running mode.
///
/// \return Is Train Mode or not.
2021-07-09 18:07:51 +08:00
bool GetTrainMode() const;
2022-05-20 17:32:24 +08:00
/// \brief Performs the training Loop in Train Mode.
///
/// \param[in] epochs The number of epoch to run.
2022-08-24 17:24:49 +08:00
/// \param[in] ds A smart pointer to MindData Dataset object.
2022-05-20 17:32:24 +08:00
/// \param[in] cbs A vector of TrainLoopCallBack objects.
///
/// \return Status of operation.
2021-07-09 18:07:51 +08:00
Status Train(int epochs, std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
2022-05-20 17:32:24 +08:00
/// \brief Performs the training loop over all data in Eval Mode.
///
2022-08-24 17:24:49 +08:00
/// \param[in] ds A smart pointer to MindData Dataset object.
2022-05-20 17:32:24 +08:00
/// \param[in] cbs A vector of TrainLoopCallBack objects.
///
/// \return Status of operation.
2021-07-09 18:07:51 +08:00
Status Evaluate(std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
private:
2021-07-09 18:07:51 +08:00
friend class Serialization;
// api without std::string
MSTensor GetInputByTensorName(const std::vector<char> &tensor_name);
std::vector<std::vector<char>> GetOutputTensorNamesChar();
MSTensor GetOutputByTensorName(const std::vector<char> &tensor_name);
std::vector<MSTensor> GetOutputsByNodeName(const std::vector<char> &node_name);
2021-09-18 10:46:46 +08:00
Status LoadConfig(const std::vector<char> &config_path);
Status UpdateConfig(const std::vector<char> &section, const std::pair<std::vector<char>, std::vector<char>> &config);
2022-03-03 14:11:40 +08:00
Status Build(const std::vector<char> &model_path, ModelType model_type,
const std::shared_ptr<Context> &model_context);
2022-07-20 22:36:12 +08:00
Status Build(const void *model_data, size_t data_size, ModelType model_type,
const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::vector<char> &dec_mode,
const std::vector<char> &cropto_lib_path);
2021-09-18 10:46:46 +08:00
Status Build(const std::vector<char> &model_path, ModelType model_type, const std::shared_ptr<Context> &model_context,
2022-07-20 22:36:12 +08:00
const Key &dec_key, const std::vector<char> &dec_mode, const std::vector<char> &cropto_lib_path);
std::shared_ptr<ModelImpl> impl_;
};
MSTensor Model::GetInputByTensorName(const std::string &tensor_name) {
return GetInputByTensorName(StringToChar(tensor_name));
}
std::vector<std::string> Model::GetOutputTensorNames() { return VectorCharToString(GetOutputTensorNamesChar()); }
MSTensor Model::GetOutputByTensorName(const std::string &tensor_name) {
return GetOutputByTensorName(StringToChar(tensor_name));
}
2021-03-23 16:12:19 +08:00
std::vector<MSTensor> Model::GetOutputsByNodeName(const std::string &node_name) {
return GetOutputsByNodeName(StringToChar(node_name));
2021-03-23 16:12:19 +08:00
}
2021-09-18 10:46:46 +08:00
2021-12-06 20:22:48 +08:00
Status Model::LoadConfig(const std::string &config_path) { return LoadConfig(StringToChar(config_path)); }
2021-09-18 10:46:46 +08:00
Status Model::UpdateConfig(const std::string &section, const std::pair<std::string, std::string> &config) {
std::pair<std::vector<char>, std::vector<char>> config_pair = {StringToChar(config.first),
StringToChar(config.second)};
return UpdateConfig(StringToChar(section), config_pair);
}
2022-07-20 22:36:12 +08:00
Status Model::Build(const void *model_data, size_t data_size, ModelType model_type,
const std::shared_ptr<Context> &model_context, const Key &dec_key, const std::string &dec_mode,
const std::string &cropto_lib_path) {
return Build(model_data, data_size, model_type, model_context, dec_key, StringToChar(dec_mode),
StringToChar(cropto_lib_path));
}
2022-06-24 14:28:36 +08:00
Status Model::Build(const std::string &model_path, ModelType model_type, const std::shared_ptr<Context> &model_context,
const Key &dec_key, const std::string &dec_mode, const std::string &cropto_lib_path) {
2022-07-20 22:36:12 +08:00
return Build(StringToChar(model_path), model_type, model_context, dec_key, StringToChar(dec_mode),
StringToChar(cropto_lib_path));
2021-09-18 10:46:46 +08:00
}
2022-06-24 14:28:36 +08:00
Status Model::Build(const std::string &model_path, ModelType model_type,
const std::shared_ptr<Context> &model_context) {
2022-03-03 14:11:40 +08:00
return Build(StringToChar(model_path), model_type, model_context);
2021-09-18 10:46:46 +08:00
}
} // namespace mindspore
#endif // MINDSPORE_INCLUDE_API_MODEL_H