mindspore/tests/st/ge/ge_pass/pass_dropout.py

98 lines
2.8 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test ge frontend pass `DropoutForGE` `DropoutGradForGE` """
import numpy as np
from tests.st.ge import ge_infer_env # pylint: disable=unused-import
from mindspore import ops, nn, context, Tensor
from mindspore.ops.composite import GradOperation
class DropoutNet(nn.Cell):
def __init__(self, keep_prob):
super(DropoutNet, self).__init__()
self.drop = nn.Dropout(keep_prob)
self.relu = ops.ReLU()
def construct(self, x):
x = self.relu(x)
return self.relu(self.drop(x))
class _Grad(nn.Cell):
def __init__(self, grad, network):
super().__init__()
self.network = network
self.grad = grad
def construct(self, *inputs):
return self.grad(self.network)(*inputs)
class GradOfFirstInput(_Grad):
"""
get grad of first input
"""
def __init__(self, network, sens_param=True):
super().__init__(grad=GradOperation(sens_param=sens_param), network=network)
def ge_drop_out_0_5(shape):
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
net = DropoutNet(0.5)
net.set_train()
x = Tensor(np.ones(shape).astype(np.float32))
out = net(x)
return out
def ge_dropout_backward_0_5(shape):
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
net = DropoutNet(0.5)
grad_net = GradOfFirstInput(net)
grad_net.set_train()
x = Tensor(np.ones(shape).astype(np.float32))
sens = Tensor(np.ones(shape).astype(np.float32))
out = grad_net(x, sens)
return out
def run_ge_dropout():
"""
Feature: Test Dropout in GE backend.
Description: Test Dropout in GE backend.
Expectation: Dropout result is random, assert result shape.
"""
shape = (1, 1, 6, 6)
out = ge_drop_out_0_5(shape)
assert out.asnumpy().shape == shape
def run_ge_dropout_backward():
"""
Feature: Test Dropout backward in GE backend.
Description: Test Dropout backward in GE backend.
Expectation: Dropout result is random, assert gradient shape.
"""
shape = (1, 1, 6, 6)
out = ge_dropout_backward_0_5(shape)
assert out.asnumpy().shape == shape
if __name__ == "__main__":
run_ge_dropout()
run_ge_dropout_backward()