diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/pad_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/pad_cpu_kernel.cc index 381d25b7303..d966f86817b 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/pad_cpu_kernel.cc +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/pad_cpu_kernel.cc @@ -83,7 +83,6 @@ void PadCPUKernel::LaunchKernel(const std::vector &inputs, const std const int pad_channel_after = paddings_[1][1]; const T pad_value = T(0); - // const int num = input_shape_[0]; const int channels_orig = input_shape_[1]; const int old_height = input_shape_[2]; const int old_width = input_shape_[3]; diff --git a/model_zoo/official/cv/centerface/dependency/centernet/src/lib/detectors/base_detector.py b/model_zoo/official/cv/centerface/dependency/centernet/src/lib/detectors/base_detector.py index 0b46ddb4e02..3c971956cbb 100644 --- a/model_zoo/official/cv/centerface/dependency/centernet/src/lib/detectors/base_detector.py +++ b/model_zoo/official/cv/centerface/dependency/centernet/src/lib/detectors/base_detector.py @@ -122,7 +122,6 @@ class CenterFaceDetector(): meta['out_height'], meta['out_width']) for j in range(1, self.num_classes + 1): dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 15) - # import pdb; pdb.set_trace() dets[0][j][:, :4] /= scale dets[0][j][:, 5:] /= scale return dets[0] @@ -157,7 +156,6 @@ class CenterFaceDetector(): if not pre_processed: images, meta = self.pre_process(image, scale, meta) # --1: pre_process else: - # import pdb; pdb.set_trace() images = pre_processed_images['images'][scale][0] meta = pre_processed_images['meta'][scale] meta = {k: v.numpy()[0] for k, v in meta.items()} diff --git a/model_zoo/official/cv/centerface/dependency/evaluate/eval.py b/model_zoo/official/cv/centerface/dependency/evaluate/eval.py index 7c4f260daf1..b565cce4028 100644 --- a/model_zoo/official/cv/centerface/dependency/evaluate/eval.py +++ b/model_zoo/official/cv/centerface/dependency/evaluate/eval.py @@ -116,10 +116,8 @@ def get_preds(pred_dir): """Get preds""" events = os.listdir(pred_dir) boxes = dict() - #pbar = tqdm.tqdm(events) pbar = events for event in pbar: - #pbar.set_description('Reading Predictions ') event_dir = os.path.join(pred_dir, event) event_images = os.listdir(event_dir) current_event = dict() @@ -258,7 +256,6 @@ def evaluation(pred_evaluation, gt_path, iou_thresh=0.4): count_face = 0 pr_curve = np.zeros((thresh_num, 2)).astype('float') # [hard, medium, easy] - # pbar = tqdm.tqdm(range(event_num)) # 61 pbar = range(event_num) error_count = 0 for i in pbar: diff --git a/model_zoo/official/cv/centerface/src/centerface.py b/model_zoo/official/cv/centerface/src/centerface.py index 0b72a835fdd..6ce93732f35 100644 --- a/model_zoo/official/cv/centerface/src/centerface.py +++ b/model_zoo/official/cv/centerface/src/centerface.py @@ -171,7 +171,6 @@ class CenterFaceLoss(nn.Cell): self.reg_loss = SmoothL1LossNew() self.reg_loss_cmask = SmoothL1LossNewCMask() self.print = P.Print() - # self.reduce_sum = P.ReduceSum() def construct(self, output_hm, output_wh, output_off, output_kps, hm, reg_mask, ind, wh, wight_mask, hm_offset, hps_mask, landmarks): @@ -190,7 +189,6 @@ class CenterFaceLoss(nn.Cell): F.depend(loss, F.sqrt(F.cast(wight_mask, mstype.float32))) F.depend(loss, F.sqrt(F.cast(reg_mask, mstype.float32))) # add print when you want to see loss detail and do debug - #self.print('hm_loss=', hm_loss, 'wh_loss=', wh_loss, 'off_loss=', off_loss, 'lm_loss=', lm_loss, 'loss=', loss) return loss diff --git a/model_zoo/official/cv/centerface/src/losses.py b/model_zoo/official/cv/centerface/src/losses.py index dbde6870c48..62e91ba9910 100644 --- a/model_zoo/official/cv/centerface/src/losses.py +++ b/model_zoo/official/cv/centerface/src/losses.py @@ -69,11 +69,9 @@ class SmoothL1LossNew(nn.Cell): :return: ''' output = self.transpose(output, (0, 2, 3, 1)) - # dim = self.shape(output)[3] mask = P.Select()(P.Equal()(ind, 1), P.Fill()(mstype.float32, P.Shape()(ind), 1.0), P.Fill()(mstype.float32, P.Shape()(ind), 0.0)) - # ind = self.cast(ind, mstype.float32) target = self.cast(target, mstype.float32) output = self.cast(output, mstype.float32) num = self.cast(self.sum(mask, ()), mstype.float32) diff --git a/model_zoo/official/cv/centerface/src/utils.py b/model_zoo/official/cv/centerface/src/utils.py index 5f37d7132dd..e35ad0abc81 100644 --- a/model_zoo/official/cv/centerface/src/utils.py +++ b/model_zoo/official/cv/centerface/src/utils.py @@ -109,15 +109,12 @@ def get_param_groups(network): parameter_name = x.name if parameter_name.endswith('.bias'): # all bias not using weight decay - # print('no decay:{}'.format(parameter_name)) no_decay_params.append(x) elif parameter_name.endswith('.gamma'): # bn weight bias not using weight decay, be carefully for now x not include BN - # print('no decay:{}'.format(parameter_name)) no_decay_params.append(x) elif parameter_name.endswith('.beta'): # bn weight bias not using weight decay, be carefully for now x not include BN - # print('no decay:{}'.format(parameter_name)) no_decay_params.append(x) else: decay_params.append(x) @@ -224,7 +221,6 @@ class LOGGER(logging.Logger): self.info('Args:') args_dict = vars(args) for key in args_dict.keys(): - # self.info('--> {}: {}'.format(key, args_dict[key])) self.info('--> %s', key) self.info('') diff --git a/model_zoo/official/cv/centerface/train.py b/model_zoo/official/cv/centerface/train.py index a25ca33f2a8..556756187e3 100644 --- a/model_zoo/official/cv/centerface/train.py +++ b/model_zoo/official/cv/centerface/train.py @@ -159,7 +159,6 @@ if __name__ == "__main__": parallel_mode = ParallelMode.STAND_ALONE degree = 1 - # context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=degree, parameter_broadcast=True, gradients_mean=True) # Notice: parameter_broadcast should be supported, but current version has bugs, thus been disabled. # To make sure the init weight on all npu is the same, we need to set a static seed in default_recurisive_init when weight initialization context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree) diff --git a/model_zoo/official/cv/ctpn/postprocess.py b/model_zoo/official/cv/ctpn/postprocess.py index ab3b8496cfd..7f3ced8f7b5 100644 --- a/model_zoo/official/cv/ctpn/postprocess.py +++ b/model_zoo/official/cv/ctpn/postprocess.py @@ -51,8 +51,6 @@ def get_gt_box(img_file, label_path): label_info = line.split(",") print(label_info) gt_boxs.append([int(label_info[0]), int(label_info[1]), int(label_info[2]), int(label_info[3])]) - #print(line) - #print(gt_boxs) return gt_boxs def ctpn_infer_test(dataset_path='', result_path='', label_path=''): diff --git a/model_zoo/official/cv/deeptext/src/Deeptext/bbox_assign_sample_stage2.py b/model_zoo/official/cv/deeptext/src/Deeptext/bbox_assign_sample_stage2.py index 06d12a30264..ac03d1130f0 100644 --- a/model_zoo/official/cv/deeptext/src/Deeptext/bbox_assign_sample_stage2.py +++ b/model_zoo/official/cv/deeptext/src/Deeptext/bbox_assign_sample_stage2.py @@ -219,8 +219,6 @@ class BboxAssignSampleForRcnn(nn.Cell): else: valid_neg_index = self.logicaland(self.concat((self.check_neg_mask, unvalid_pos_index)), valid_neg_index) valid_neg_index = self.logicaland(valid_neg_index, self.check_neg_mask_ignore_end) - # import pdb - # pdb.set_trace() neg_index = self.reshape(neg_index, self.reshape_shape_neg) valid_neg_index = self.cast(valid_neg_index, mstype.int32) diff --git a/model_zoo/official/cv/deeptext/src/Deeptext/deeptext_vgg16.py b/model_zoo/official/cv/deeptext/src/Deeptext/deeptext_vgg16.py index 9bfdafeab44..34e9ab3426a 100644 --- a/model_zoo/official/cv/deeptext/src/Deeptext/deeptext_vgg16.py +++ b/model_zoo/official/cv/deeptext/src/Deeptext/deeptext_vgg16.py @@ -42,7 +42,6 @@ def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mod layers += [nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=weights, has_bias=True, bias_init=bias_conv)] - # layers += [nn.BatchNorm2d(out_channels)] return nn.SequentialCell(layers) @@ -195,7 +194,6 @@ class Deeptext_VGG16(nn.Cell): self.vgg16_feature_extractor = VGG16FeatureExtraction() def construct(self, img_data, img_metas, gt_bboxes, gt_labels, gt_valids): - # f1, f2, f3, f4, f5 = self.vgg16_feature_extractor(img_data) _, _, _, f4, f5 = self.vgg16_feature_extractor(img_data) f4 = self.cast(f4, mstype.float32) f5 = self.cast(f5, mstype.float32) @@ -306,15 +304,11 @@ class Deeptext_VGG16(nn.Cell): out_boxes_i = self.decode(rois, reg_logits_i) boxes_all += (out_boxes_i,) - # img_metas_all = self.split(img_metas) scores_all = self.split(scores) mask_all = self.split(self.cast(mask_logits, mstype.int32)) boxes_all_with_batchsize = () for i in range(self.test_batch_size): - # scale = self.split_shape(self.squeeze(img_metas_all[i])) - # scale_h = scale[2] - # scale_w = scale[3] boxes_tuple = () for j in range(self.num_classes): boxes_tmp = self.split(boxes_all[j]) diff --git a/model_zoo/official/cv/deeptext/src/Deeptext/vgg16.py b/model_zoo/official/cv/deeptext/src/Deeptext/vgg16.py index c379843ca3e..f09a2488d5d 100644 --- a/model_zoo/official/cv/deeptext/src/Deeptext/vgg16.py +++ b/model_zoo/official/cv/deeptext/src/Deeptext/vgg16.py @@ -21,7 +21,6 @@ from mindspore.ops import operations as P def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'): """Conv2D wrapper.""" - # shape = (out_channels, in_channels, kernel_size, kernel_size) weights = 'ones' layers = [] layers += [nn.Conv2d(in_channels, out_channels, diff --git a/model_zoo/official/cv/deeptext/src/dataset.py b/model_zoo/official/cv/deeptext/src/dataset.py index cd831341ff4..e7e17230689 100644 --- a/model_zoo/official/cv/deeptext/src/dataset.py +++ b/model_zoo/official/cv/deeptext/src/dataset.py @@ -404,7 +404,6 @@ def create_label(is_training): image_path = os.path.join(coco_root, data_type, file_name) annos = [] for label in anno: - # if label["utf8_string"] != '': bbox = label["bbox"] x1, x2 = bbox[0], bbox[0] + bbox[2] y1, y2 = bbox[1], bbox[1] + bbox[3] diff --git a/model_zoo/official/cv/nasnet/train.py b/model_zoo/official/cv/nasnet/train.py index ce8dc6cbd13..4b6ddbd06e1 100755 --- a/model_zoo/official/cv/nasnet/train.py +++ b/model_zoo/official/cv/nasnet/train.py @@ -104,10 +104,6 @@ if __name__ == '__main__': optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay, momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale) - # net_with_grads = NASNetAMobileTrainOneStepWithClipGradient(net_with_loss, optimizer) - # net_with_grads.set_train() - # model = Model(net_with_grads) - # high performance net_with_loss.set_train() model = Model(net_with_loss, optimizer=optimizer) diff --git a/model_zoo/official/cv/openpose/eval.py b/model_zoo/official/cv/openpose/eval.py index f3ec749bcab..0cfd0c332c8 100644 --- a/model_zoo/official/cv/openpose/eval.py +++ b/model_zoo/official/cv/openpose/eval.py @@ -91,8 +91,7 @@ def load_model(test_net, model_path): continue elif key.startswith('network'): param_dict_new[key[8:]] = values - # else: - # param_dict_new[key] = values + load_param_into_net(test_net, param_dict_new) def preprocess(img): @@ -310,11 +309,8 @@ def detect(img, network): orig_img_h, orig_img_w, _ = orig_img.shape input_w, input_h = compute_optimal_size(orig_img, params['inference_img_size']) # 368 - # map_w, map_h = compute_optimal_size(orig_img, params['heatmap_size']) # 320 map_w, map_h = compute_optimal_size(orig_img, params['inference_img_size']) - # print("image size is: ", input_w, input_h) - resized_image = cv2.resize(orig_img, (input_w, input_h)) x_data = preprocess(resized_image) x_data = Tensor(x_data, mstype.float32) @@ -388,7 +384,6 @@ def draw_person_pose(orig_img, poses): return canvas def depreprocess(img): - #x_data = img.astype('f') x_data = img[0] x_data += 0.5 x_data *= 255 @@ -420,7 +415,6 @@ def val(): poses, scores = detect(img, network) if poses.shape[0] > 0: - #print("got poses") for index, pose in enumerate(poses): data = dict() @@ -437,7 +431,6 @@ def val(): print("Predict poses size is zero.", flush=True) img = draw_person_pose(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), poses) - #print('Saving result into',str(img_id)+'.png...') save_path = os.path.join(args.output_path, str(img_id)+".png") cv2.imwrite(save_path, img) diff --git a/model_zoo/official/cv/openpose/src/dataset.py b/model_zoo/official/cv/openpose/src/dataset.py index e148d5b2c2a..1005e68e496 100644 --- a/model_zoo/official/cv/openpose/src/dataset.py +++ b/model_zoo/official/cv/openpose/src/dataset.py @@ -69,7 +69,6 @@ class txtdataset(): if person_cnt > 0: annotations = valid_annotations_for_img if annotations is None: - #print(img_id,'is removed') self.imgIds.remove(img_id) def overlay_paf(self, img, paf): @@ -137,7 +136,6 @@ class txtdataset(): max_scale = min(max(max_scale, 1), params['max_scale']) scale = float((max_scale - min_scale) * random.random() + min_scale) - #scale = random.random()*1.5+0.5 shape = (round(w * scale), round(h * scale)) resized_img, resized_mask, resized_poses = self.resize_data(img, ignore_mask, poses, shape) @@ -145,7 +143,6 @@ class txtdataset(): def random_rotate_img(self, img, mask, poses): h, w, _ = img.shape - # degree = (random.random() - 0.5) * 2 * params['max_rotate_degree'] degree = np.random.randn() / 3 * params['max_rotate_degree'] rad = degree * math.pi / 180 center = (w / 2, h / 2) @@ -473,12 +470,8 @@ class txtdataset(): resized_img, ignore_mask, resized_poses = self.resize_data(img, ignore_mask, poses, shape=(self.insize, self.insize)) - # heatmaps = self.generate_heatmaps(resized_img, resized_poses, params['heatmap_sigma']) - # resized_heatmaps = self.resize_output(heatmaps) resized_heatmaps = self.generate_heatmaps_fast(resized_img, resized_poses, params['heatmap_sigma']) - # pafs = self.generate_pafs(resized_img, resized_poses, params['paf_sigma']) - # resized_pafs = self.resize_output(pafs) resized_pafs = self.generate_pafs_fast(resized_img, resized_poses, params['paf_sigma']) ignore_mask = cv2.morphologyEx(ignore_mask.astype('uint8'), cv2.MORPH_DILATE, np.ones((16, 16))).astype('bool') diff --git a/model_zoo/official/cv/openpose/src/loss.py b/model_zoo/official/cv/openpose/src/loss.py index 55c6437fed6..f32116d65c7 100644 --- a/model_zoo/official/cv/openpose/src/loss.py +++ b/model_zoo/official/cv/openpose/src/loss.py @@ -74,8 +74,6 @@ class openpose_loss(_Loss): self.maxoftensor = P.ArgMaxWithValue(-1) def mean_square_error(self, map1, map2, mask=None): - # print("mask", mask) - # import pdb; pdb.set_trace() if mask is None: mse = self.reduceMean((map1 - map2) ** 2) return mse @@ -98,14 +96,6 @@ class openpose_loss(_Loss): paf_masks = F.stop_gradient(paf_masks) heatmap_masks = F.stop_gradient(heatmap_masks) for logit_paf_t, logit_heatmap_t in zip(logit_paf, logit_heatmap): - # TEST - # tensor1 -- tuple - # tensor1 = self.maxoftensor(logit_paf_t)[1] - # tensor2 = self.maxoftensor(logit_heatmap_t)[1] - # tensor3 = self.maxoftensor(tensor1)[1] - # tensor4 = self.maxoftensor(tensor2)[1] - # self.print("paf",tensor3) - # self.print("heatmaps",tensor2) pafs_loss_t = self.mean_square_error(logit_paf_t, gt_paf, paf_masks) heatmaps_loss_t = self.mean_square_error(logit_heatmap_t, gt_heatmap, heatmap_masks) @@ -125,8 +115,6 @@ class BuildTrainNetwork(nn.Cell): logit_pafs, logit_heatmap = self.network(input_data) loss, _, _ = self.criterion(logit_pafs, logit_heatmap, gt_paf, gt_heatmap, mask) return loss - #loss = self.criterion(logit_pafs, logit_heatmap, gt_paf, gt_heatmap, mask) - # return loss, heatmaps_loss, pafs_loss class TrainOneStepWithClipGradientCell(nn.Cell): '''TrainOneStepWithClipGradientCell''' diff --git a/model_zoo/official/cv/openpose/src/openposenet.py b/model_zoo/official/cv/openpose/src/openposenet.py index 0e1b0c51648..e30b98fef32 100644 --- a/model_zoo/official/cv/openpose/src/openposenet.py +++ b/model_zoo/official/cv/openpose/src/openposenet.py @@ -88,14 +88,12 @@ class Vgg(nn.Cell): in_channels = 3 for v in cfg: if v == 'M': - # layers += [nn.MaxPool2d(kernel_size=2, stride=2)] layers += [nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='same')] else: conv2d = Conv2d(in_channels=in_channels, out_channels=v, kernel_size=3, stride=1, - # padding=1, pad_mode='same', has_bias=True) if batch_norm: diff --git a/model_zoo/official/cv/openpose/src/utils.py b/model_zoo/official/cv/openpose/src/utils.py index 84af3ceba7d..b44b3749137 100644 --- a/model_zoo/official/cv/openpose/src/utils.py +++ b/model_zoo/official/cv/openpose/src/utils.py @@ -108,17 +108,13 @@ def get_lr(lr, lr_gamma, steps_per_epoch, max_epoch_train, lr_steps, group_size, def load_model(test_net, model_path): if model_path: param_dict = load_checkpoint(model_path) - # print(type(param_dict)) param_dict_new = {} for key, values in param_dict.items(): - # print('key:', key) if key.startswith('moment'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values - # else: - # param_dict_new[key] = values load_param_into_net(test_net, param_dict_new) diff --git a/model_zoo/official/cv/resnet152/src/lr_generator.py b/model_zoo/official/cv/resnet152/src/lr_generator.py index 92fa4adba8e..7c9a7a0c484 100644 --- a/model_zoo/official/cv/resnet152/src/lr_generator.py +++ b/model_zoo/official/cv/resnet152/src/lr_generator.py @@ -144,7 +144,6 @@ def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch """ lr_each_step = [] total_steps = int(steps_per_epoch * total_epochs) - # warmup_steps = steps_per_epoch * warmup_epochs warmup_steps = warmup_epochs if lr_decay_mode == 'steps': diff --git a/model_zoo/official/cv/retinaface_resnet50/eval.py b/model_zoo/official/cv/retinaface_resnet50/eval.py index 13106aa5bd0..cc789c9820f 100644 --- a/model_zoo/official/cv/retinaface_resnet50/eval.py +++ b/model_zoo/official/cv/retinaface_resnet50/eval.py @@ -406,14 +406,6 @@ def val(): predict_result_path = detection.write_result() print('predict result path is {}'.format(predict_result_path)) - - # # TEST - # import json - # with open('./widerface_result/predict_2020_09_08_11_07_25.json', 'r') as f: - # result = json.load(f) - # detection.results = result - - detection.get_eval_result() print('Eval done.') diff --git a/model_zoo/official/cv/simple_pose/eval.py b/model_zoo/official/cv/simple_pose/eval.py index 7ff58210fc5..7ff1233df93 100644 --- a/model_zoo/official/cv/simple_pose/eval.py +++ b/model_zoo/official/cv/simple_pose/eval.py @@ -112,7 +112,6 @@ def validate(cfg, val_dataset, model, output_dir): if cfg.TEST.SHIFT_HEATMAP: output_flipped[:, :, :, 1:] = \ output_flipped.copy()[:, :, :, 0:-1] - # output_flipped[:, :, :, 0] = 0 output = (output + output_flipped) * 0.5 diff --git a/model_zoo/official/cv/unet/src/utils.py b/model_zoo/official/cv/unet/src/utils.py index 981ed2a1815..72b6956a30c 100644 --- a/model_zoo/official/cv/unet/src/utils.py +++ b/model_zoo/official/cv/unet/src/utils.py @@ -58,7 +58,7 @@ def apply_eval(eval_param_dict): dataset = eval_param_dict["dataset"] metrics_name = eval_param_dict["metrics_name"] index = 0 if metrics_name == "dice_coeff" else 1 - eval_score = model.eval(dataset, dataset_sink_mode=False)[metrics_name][index] + eval_score = model.eval(dataset, dataset_sink_mode=False)["dice_coeff"][index] return eval_score class dice_coeff(nn.Metric): diff --git a/model_zoo/official/cv/yolov4/src/transforms.py b/model_zoo/official/cv/yolov4/src/transforms.py index 250c6b8a039..18a61548efb 100644 --- a/model_zoo/official/cv/yolov4/src/transforms.py +++ b/model_zoo/official/cv/yolov4/src/transforms.py @@ -146,7 +146,6 @@ def _preprocess_true_boxes(true_boxes, anchors, in_shape, num_classes, max_boxes num_layers = anchors.shape[0] // 3 anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] true_boxes = np.array(true_boxes, dtype='float32') - # input_shape = np.array([in_shape, in_shape], dtype='int32') input_shape = np.array(in_shape, dtype='int32') boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2. # trans to box center point @@ -208,8 +207,6 @@ def _preprocess_true_boxes(true_boxes, anchors, in_shape, num_classes, max_boxes y_true[l][j, i, k, 5 + c] = 1. threshold_anchor = (iou > iou_threshold) - # print('threshold_anchor\n', threshold_anchor.shape, threshold_anchor) - # for t, n in enumerate(best_anchor): for t in range(threshold_anchor.shape[0]): for n in range(threshold_anchor.shape[1]): if not threshold_anchor[t][n]: diff --git a/model_zoo/official/cv/yolov4/test.py b/model_zoo/official/cv/yolov4/test.py index 743edfd911f..0dc9e165630 100644 --- a/model_zoo/official/cv/yolov4/test.py +++ b/model_zoo/official/cv/yolov4/test.py @@ -292,7 +292,6 @@ def test(): exit(1) data_root = args.data_root - # annFile = args.annFile config = ConfigYOLOV4CspDarkNet53() if args.testing_shape: diff --git a/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/beam_search.py b/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/beam_search.py index 0aa0efdc6e0..68f53acfc66 100644 --- a/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/beam_search.py +++ b/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/beam_search.py @@ -91,7 +91,6 @@ class TileBeam(nn.Cell): # add an dim input_tensor = self.expand(input_tensor, 1) # get tile shape: [1, beam, ...] - # shape = self.shape(input_tensor) tile_shape = (1,) + (self.beam_width,) for _ in range(len(shape) - 1): tile_shape = tile_shape + (1,) @@ -420,7 +419,6 @@ class BeamSearchDecoder(nn.Cell): # add length penalty scores penalty_len = self.length_penalty(state_length) - # return penalty_len log_probs = self.real_div(state_log_probs, penalty_len) penalty_cov = C.clip_by_value(accu_attn_scores, 0.0, 1.0) penalty_cov = self.log(penalty_cov) diff --git a/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/decoder_beam_infer.py b/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/decoder_beam_infer.py index 7b96f478b18..dda592b5cff 100644 --- a/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/decoder_beam_infer.py +++ b/model_zoo/official/nlp/gnmt_v2/src/gnmt_model/decoder_beam_infer.py @@ -50,7 +50,6 @@ class PredLogProbs(nn.Cell): self.compute_type = compute_type self.dtype = dtype self.log_softmax = nn.LogSoftmax(axis=-1) - # self.shape_flat_sequence_tensor = (self.batch_size * self.seq_length, self.width) self.cast = P.Cast() def construct(self, logits): diff --git a/model_zoo/official/nlp/gnmt_v2/src/utils/initializer.py b/model_zoo/official/nlp/gnmt_v2/src/utils/initializer.py index 85471c0649a..9c5077f2fa5 100644 --- a/model_zoo/official/nlp/gnmt_v2/src/utils/initializer.py +++ b/model_zoo/official/nlp/gnmt_v2/src/utils/initializer.py @@ -56,10 +56,6 @@ def weight_variable(shape): Returns: Tensor, var. """ - # scale_shape = shape - # fan_in, fan_out = _compute_fans(scale_shape) - # scale = 1.0 / max(1., (fan_in + fan_out) / 2.) - # limit = math.sqrt(3.0 * scale) limit = 0.1 values = np.random.uniform(-limit, limit, shape) return values diff --git a/model_zoo/official/nlp/gnmt_v2/src/utils/optimizer.py b/model_zoo/official/nlp/gnmt_v2/src/utils/optimizer.py index 1a0206b72d3..824d33aeadb 100644 --- a/model_zoo/official/nlp/gnmt_v2/src/utils/optimizer.py +++ b/model_zoo/official/nlp/gnmt_v2/src/utils/optimizer.py @@ -210,7 +210,6 @@ class Adam(Optimizer): validator.check_value_type("use_locking", use_locking, [bool], self.cls_name) validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name) validator.check_value_type("loss_scale", loss_scale, [float], self.cls_name) - # validator.check_number_range("loss_scale", loss_scale, 1.0, float("inf"), Rel.INC_LEFT, self.cls_name) self.beta1 = Tensor(beta1, mstype.float32) self.beta2 = Tensor(beta2, mstype.float32) diff --git a/model_zoo/official/nlp/gnmt_v2/train.py b/model_zoo/official/nlp/gnmt_v2/train.py index 17fde1d3b7d..b193ae97568 100644 --- a/model_zoo/official/nlp/gnmt_v2/train.py +++ b/model_zoo/official/nlp/gnmt_v2/train.py @@ -123,7 +123,6 @@ def _load_checkpoint_to_net(config, network): if name.endswith(".gamma"): param.set_data(one_weight(value.asnumpy().shape)) elif name.endswith(".beta") or name.endswith(".bias"): - # param.set_data(zero_weight(value.asnumpy().shape)) if param.data.dtype == "Float32": param.set_data((weight_variable(value.asnumpy().shape).astype(np.float32))) elif param.data.dtype == "Float16": diff --git a/model_zoo/official/recommend/naml/postprocess.py b/model_zoo/official/recommend/naml/postprocess.py index 0323bf27632..aeeee149a7e 100644 --- a/model_zoo/official/recommend/naml/postprocess.py +++ b/model_zoo/official/recommend/naml/postprocess.py @@ -64,7 +64,6 @@ class NAMLMetric: def update(self, predict, y_true): predict = predict.flatten() y_true = y_true.flatten() - # predict = np.interp(predict, (predict.min(), predict.max()), (0, 1)) self.AUC_list.append(AUC(y_true, predict)) self.MRR_list.append(MRR(y_true, predict)) self.nDCG5_list.append(nDCG(y_true, predict, 5)) diff --git a/model_zoo/official/recommend/naml/src/utils.py b/model_zoo/official/recommend/naml/src/utils.py index 773adf06c4c..f92bb81b3f5 100644 --- a/model_zoo/official/recommend/naml/src/utils.py +++ b/model_zoo/official/recommend/naml/src/utils.py @@ -117,7 +117,6 @@ class NAMLMetric: def update(self, predict, y_true): predict = predict.flatten() y_true = y_true.flatten() - # predict = np.interp(predict, (predict.min(), predict.max()), (0, 1)) self.AUC_list.append(AUC(y_true, predict)) self.MRR_list.append(MRR(y_true, predict)) self.nDCG5_list.append(nDCG(y_true, predict, 5)) diff --git a/model_zoo/official/recommend/ncf/eval.py b/model_zoo/official/recommend/ncf/eval.py index 138a1138fb3..8f60b13995d 100644 --- a/model_zoo/official/recommend/ncf/eval.py +++ b/model_zoo/official/recommend/ncf/eval.py @@ -65,7 +65,6 @@ def test_eval(): loss_net = NetWithLossClass(ncf_net) train_net = TrainStepWrap(loss_net) - # train_net.set_train() eval_net = PredictWithSigmoid(ncf_net, topk, num_eval_neg) ncf_metric = NCFMetric() diff --git a/model_zoo/official/recommend/ncf/src/dataset.py b/model_zoo/official/recommend/ncf/src/dataset.py index 010eb197aa2..a7d22ed0b11 100644 --- a/model_zoo/official/recommend/ncf/src/dataset.py +++ b/model_zoo/official/recommend/ncf/src/dataset.py @@ -529,8 +529,6 @@ class DistributedSamplerOfEval: self._eval_batch_size = eval_batch_size self._batchs_per_rank = int(math.ceil(self._eval_batches_per_epoch / rank_size)) - # self._samples_per_rank = int(math.ceil(self._batchs_per_rank * self._eval_batch_size)) - # self._total_num_samples = self._samples_per_rank * self._rank_size def __iter__(self): indices = [(x * self._eval_users_per_batch, (x + self._rank_id + 1) * self._eval_users_per_batch) diff --git a/model_zoo/official/recommend/ncf/src/ncf.py b/model_zoo/official/recommend/ncf/src/ncf.py index 12b0a7470f0..d491bcf601c 100644 --- a/model_zoo/official/recommend/ncf/src/ncf.py +++ b/model_zoo/official/recommend/ncf/src/ncf.py @@ -201,7 +201,6 @@ class NetWithLossClass(nn.Cell): """ def __init__(self, network): super(NetWithLossClass, self).__init__(auto_prefix=False) - #self.loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) self.loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) self.network = network self.reducesum = P.ReduceSum(keep_dims=False) diff --git a/model_zoo/research/audio/wavenet/wavenet_vocoder/upsample.py b/model_zoo/research/audio/wavenet/wavenet_vocoder/upsample.py index 137d7ae9967..b8bca27bdcd 100644 --- a/model_zoo/research/audio/wavenet/wavenet_vocoder/upsample.py +++ b/model_zoo/research/audio/wavenet/wavenet_vocoder/upsample.py @@ -58,15 +58,11 @@ class UpsampleNetwork(nn.Cell): for scale in upsample_scales: freq_axis_padding = (freq_axis_kernel_size - 1) // 2 k_size = (freq_axis_kernel_size, scale * 2 + 1) - # padding = (freq_axis_padding, scale) padding = (freq_axis_padding, freq_axis_padding, scale, scale) stretch = Resize(scale, 1, mode) conv = nn.Conv2d(1, 1, kernel_size=k_size, has_bias=False, pad_mode='pad', padding=padding) up_layers.append(stretch) up_layers.append(conv) - # if upsample_activation != "none": - # nonlinear = _get_activation(upsample_activation) - # up_layers.append(nonlinear(**upsample_activation_params)) self.up_layers = nn.CellList(up_layers) def construct(self, c): @@ -86,8 +82,6 @@ class UpsampleNetwork(nn.Cell): # B x C x T c = self.squeeze_op(c) - # if self.indent > 0: - # c = c[:, :, self.indent:-self.indent] return c diff --git a/model_zoo/research/cv/IPT/src/data/common.py b/model_zoo/research/cv/IPT/src/data/common.py index 3155e1381bc..9509b8d4f18 100755 --- a/model_zoo/research/cv/IPT/src/data/common.py +++ b/model_zoo/research/cv/IPT/src/data/common.py @@ -67,9 +67,6 @@ def np2Tensor(*args, rgb_range=255): np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1))) tensor = np_transpose.astype(np.float32) tensor = tensor * (rgb_range / 255) - # tensor = torch.from_numpy(np_transpose).float() - # tensor.mul_(rgb_range / 255) - return tensor return [_np2Tensor(a) for a in args] diff --git a/model_zoo/research/cv/MaskedFaceRecognition/dataset/Dataset.py b/model_zoo/research/cv/MaskedFaceRecognition/dataset/Dataset.py index f158b4ceb5d..bb98d5831e5 100644 --- a/model_zoo/research/cv/MaskedFaceRecognition/dataset/Dataset.py +++ b/model_zoo/research/cv/MaskedFaceRecognition/dataset/Dataset.py @@ -159,7 +159,6 @@ class ImageFolderPKDataset: for idx, sample in enumerate(self.samples): label = sample[1] id2range[label].append((sample, idx)) - # print(id2range) for key in id2range: id2range[key].sort(key=lambda x: int(os.path.basename(x[0][0]).split(".")[0])) for item in id2range[key]: diff --git a/model_zoo/research/cv/MaskedFaceRecognition/train.py b/model_zoo/research/cv/MaskedFaceRecognition/train.py index 0c43ed6a359..a906efc509a 100644 --- a/model_zoo/research/cv/MaskedFaceRecognition/train.py +++ b/model_zoo/research/cv/MaskedFaceRecognition/train.py @@ -93,9 +93,7 @@ if __name__ == '__main__': model = Model(train_net, eval_network=test_net, metrics={"Accuracy": Accuracy()}) - # time_cb = TimeMonitor(data_size=step_size) loss_cb = LossMonitor() - #cb = [time_cb, loss_cb] cb = [loss_cb] config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, \ keep_checkpoint_max=config.keep_checkpoint_max) diff --git a/model_zoo/research/cv/MaskedFaceRecognition/utils/metric.py b/model_zoo/research/cv/MaskedFaceRecognition/utils/metric.py index 7c1bcb4d90b..c798f0e210a 100644 --- a/model_zoo/research/cv/MaskedFaceRecognition/utils/metric.py +++ b/model_zoo/research/cv/MaskedFaceRecognition/utils/metric.py @@ -54,12 +54,10 @@ def cmc( assert isinstance(gallery_ids, np.ndarray) # assert isinstance(query_cams, np.ndarray) # assert isinstance(gallery_cams, np.ndarray) - # separate_camera_set=False first_match_break = True m, _ = distmat.shape # Sort and find correct matches indices = np.argsort(distmat, axis=1) - #print(indices) matches = (gallery_ids[indices] == query_ids[:, np.newaxis]) # Compute CMC for each query ret = np.zeros([m, topk]) @@ -174,21 +172,13 @@ def mean_ap( is_valid_query = np.zeros(m) for i in range(m): # Filter out the same id and same camera - # valid = ((gallery_ids[indices[i]] != query_ids[i]) | - # (gallery_cams[indices[i]] != query_cams[i])) valid = (gallery_ids[indices[i]] != query_ids[i]) | (gallery_ids[indices[i]] == query_ids[i]) - # valid = indices[i] != i - # valid = (gallery_cams[indices[i]] != query_cams[i]) y_true = matches[i, valid] y_score = -distmat[i][indices[i]][valid] - # y_true=y_true[0:100] - # y_score=y_score[0:100] if not np.any(y_true): continue is_valid_query[i] = 1 aps[i] = average_precision_score(y_true, y_score) - # if not aps: - # raise RuntimeError("No valid query") if average: return float(np.sum(aps)) / np.sum(is_valid_query) return aps, is_valid_query diff --git a/model_zoo/research/hpc/sponge/src/angle.py b/model_zoo/research/hpc/sponge/src/angle.py index 22d619e1907..38a1e4f3a79 100644 --- a/model_zoo/research/hpc/sponge/src/angle.py +++ b/model_zoo/research/hpc/sponge/src/angle.py @@ -34,7 +34,6 @@ class Angle: self.angle_with_H_numbers = value[4] self.angle_without_H_numbers = value[5] self.angle_numbers = self.angle_with_H_numbers + self.angle_without_H_numbers - # print(self.angle_numbers) information = [] information.extend(value) while count < 15: @@ -108,7 +107,6 @@ class Angle: if "%FORMAT" in context[start_idx]: continue else: - # print(start_idx) value = list(map(float, context[start_idx].strip().split())) information.extend(value) count += len(value) diff --git a/model_zoo/research/hpc/sponge/src/md_information.py b/model_zoo/research/hpc/sponge/src/md_information.py index 81051e540a1..f4dc2e26f17 100644 --- a/model_zoo/research/hpc/sponge/src/md_information.py +++ b/model_zoo/research/hpc/sponge/src/md_information.py @@ -154,7 +154,6 @@ class md_information: self.simulation_start_time = float(context[1].strip().split()[1]) while count <= 6 * self.atom_numbers + 3: start_idx += 1 - # print(start_idx) value = list(map(float, context[start_idx].strip().split())) information.extend(value) count += len(value) diff --git a/model_zoo/research/nlp/dscnn/src/dataset.py b/model_zoo/research/nlp/dscnn/src/dataset.py index a41d6dafd7b..f50b6b366e9 100644 --- a/model_zoo/research/nlp/dscnn/src/dataset.py +++ b/model_zoo/research/nlp/dscnn/src/dataset.py @@ -32,7 +32,6 @@ class NpyDataset(): def __getitem__(self, item): data = self.data[item] label = self.label[item] - # return data, label return data.astype(np.float32), label.astype(np.int32) diff --git a/model_zoo/research/nlp/dscnn/src/download_process_data.py b/model_zoo/research/nlp/dscnn/src/download_process_data.py index 8e1f94fdad0..564721463d2 100644 --- a/model_zoo/research/nlp/dscnn/src/download_process_data.py +++ b/model_zoo/research/nlp/dscnn/src/download_process_data.py @@ -195,7 +195,6 @@ class AudioProcessor(): sliced_foreground = padded_foreground[time_shift_offset: time_shift_offset + desired_samples] background_add = background_data[0] * background_volume + sliced_foreground background_clamp = np.clip(background_add, -1.0, 1.0) - # feature = mfcc(background_clamp, samplerate=FLAGS.sample_rate, winlen=0.03, winstep=0.01, numcep=40, nfilt=40).flatten() feature = mfcc(background_clamp, samplerate=FLAGS.sample_rate, winlen=FLAGS.window_size_ms / 1000, winstep=FLAGS.window_stride_ms / 1000, numcep=FLAGS.dct_coefficient_count, nfilt=40, nfft=1024, lowfreq=20, highfreq=7000).flatten() diff --git a/model_zoo/research/nlp/tprr/src/rerank_and_reader_utils.py b/model_zoo/research/nlp/tprr/src/rerank_and_reader_utils.py index b0ecaa01657..5595c71e42e 100644 --- a/model_zoo/research/nlp/tprr/src/rerank_and_reader_utils.py +++ b/model_zoo/research/nlp/tprr/src/rerank_and_reader_utils.py @@ -382,7 +382,6 @@ def get_ans_from_pos(tokenizer, examples, features, y1, y2, unique_id): tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, True, False) - # print("final_text: " + final_text) return final_text diff --git a/model_zoo/research/recommend/autodis/train.py b/model_zoo/research/recommend/autodis/train.py index b894903ef2d..70a37899a4b 100644 --- a/model_zoo/research/recommend/autodis/train.py +++ b/model_zoo/research/recommend/autodis/train.py @@ -23,7 +23,6 @@ from mindspore.communication.management import init, get_rank from mindspore.train.model import Model from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor from mindspore.common import set_seed -#from mindspore.profiler import Profiler from src.autodis import ModelBuilder, AUCMetric from src.config import DataConfig, ModelConfig, TrainConfig @@ -75,7 +74,6 @@ if __name__ == '__main__': rank_id = None # Init Profiler - #profiler = Profiler(output_path='./data', is_detail=True, is_show_op_path=False, subgraph='all') ds_train = create_dataset(args_opt.dataset_path, train_mode=True,