forked from mindspore-Ecosystem/mindspore
!13705 Update CPU Supported OPS
From: @wuxuejian Reviewed-by: @liangchenghui,@kisnwang Signed-off-by: @liangchenghui
This commit is contained in:
commit
9ae264f32a
|
@ -642,7 +642,7 @@ class Squeeze(PrimitiveWithInfer):
|
||||||
ValueError: If the corresponding dimension of the specified axis does not equal to 1.
|
ValueError: If the corresponding dimension of the specified axis does not equal to 1.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
||||||
|
@ -1984,7 +1984,7 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
|
||||||
ValueError: If length of shape of `segment_ids` is less than 1.
|
ValueError: If length of shape of `segment_ids` is less than 1.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> input_x = Tensor([1, 2, 3, 4], mindspore.float32)
|
>>> input_x = Tensor([1, 2, 3, 4], mindspore.float32)
|
||||||
|
@ -5239,7 +5239,7 @@ class Range(PrimitiveWithCheck):
|
||||||
[0, 4, 8]
|
[0, 4, 8]
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``GPU``
|
``GPU`` ``CPU``
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
|
|
|
@ -2658,7 +2658,7 @@ class Acosh(PrimitiveWithInfer):
|
||||||
TypeError: If `input_x` is not a Tensor.
|
TypeError: If `input_x` is not a Tensor.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> acosh = ops.Acosh()
|
>>> acosh = ops.Acosh()
|
||||||
|
@ -2735,7 +2735,7 @@ class Asinh(PrimitiveWithInfer):
|
||||||
TypeError: If `input_x` is not a Tensor.
|
TypeError: If `input_x` is not a Tensor.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> asinh = ops.Asinh()
|
>>> asinh = ops.Asinh()
|
||||||
|
|
|
@ -664,7 +664,7 @@ class HSwish(PrimitiveWithInfer):
|
||||||
TypeError: If dtype of `input_data` is neither float16 nor float32.
|
TypeError: If dtype of `input_data` is neither float16 nor float32.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``GPU``
|
``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> hswish = ops.HSwish()
|
>>> hswish = ops.HSwish()
|
||||||
|
@ -708,7 +708,7 @@ class Sigmoid(PrimitiveWithInfer):
|
||||||
TypeError: If `input_x` is not a Tensor.
|
TypeError: If `input_x` is not a Tensor.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
|
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
|
||||||
|
@ -754,7 +754,7 @@ class HSigmoid(PrimitiveWithInfer):
|
||||||
TypeError: If dtype of `input_data` is neither float16 nor float32.
|
TypeError: If dtype of `input_data` is neither float16 nor float32.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``GPU``
|
``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> hsigmoid = ops.HSigmoid()
|
>>> hsigmoid = ops.HSigmoid()
|
||||||
|
@ -1158,7 +1158,7 @@ class BatchNorm(PrimitiveWithInfer):
|
||||||
TypeError: If dtype of `input_x`, `scale` or `mean` is neither float16 nor float32.
|
TypeError: If dtype of `input_x`, `scale` or `mean` is neither float16 nor float32.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend``
|
``Ascend`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> input_x = Tensor(np.ones([2, 2]), mindspore.float32)
|
>>> input_x = Tensor(np.ones([2, 2]), mindspore.float32)
|
||||||
|
@ -1940,7 +1940,7 @@ class Conv2DBackpropInput(PrimitiveWithInfer):
|
||||||
ValueError: If `data_format` is neither 'NCHW' not 'NHWC'.
|
ValueError: If `data_format` is neither 'NCHW' not 'NHWC'.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32)
|
>>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32)
|
||||||
|
@ -2482,7 +2482,7 @@ class SmoothL1Loss(PrimitiveWithInfer):
|
||||||
ValueError: If shape of `prediction` is not the same as `target`.
|
ValueError: If shape of `prediction` is not the same as `target`.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> loss = ops.SmoothL1Loss()
|
>>> loss = ops.SmoothL1Loss()
|
||||||
|
@ -2795,7 +2795,7 @@ class ApplyRMSProp(PrimitiveWithInfer):
|
||||||
ValueError: If `decay`, `momentum` or `epsilon` is not a constant value.
|
ValueError: If `decay`, `momentum` or `epsilon` is not a constant value.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> apply_rms = ops.ApplyRMSProp()
|
>>> apply_rms = ops.ApplyRMSProp()
|
||||||
|
@ -2898,7 +2898,7 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
|
||||||
TypeError: If dtype of `decay`, `momentum` or `epsilon` is not float.
|
TypeError: If dtype of `decay`, `momentum` or `epsilon` is not float.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> centered_rms_prop = ops.ApplyCenteredRMSProp()
|
>>> centered_rms_prop = ops.ApplyCenteredRMSProp()
|
||||||
|
@ -2987,7 +2987,7 @@ class LayerNorm(Primitive):
|
||||||
TypeError: If `input_x`, `gamma` or `beta` is not a Tensor.
|
TypeError: If `input_x`, `gamma` or `beta` is not a Tensor.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32)
|
>>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32)
|
||||||
|
@ -3367,7 +3367,7 @@ class GeLU(PrimitiveWithInfer):
|
||||||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
|
>>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
|
||||||
|
@ -3868,7 +3868,7 @@ class Pad(PrimitiveWithInfer):
|
||||||
ValueError: If shape of `paddings` is not (n, 2).
|
ValueError: If shape of `paddings` is not (n, 2).
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
||||||
|
@ -3940,7 +3940,7 @@ class MirrorPad(PrimitiveWithInfer):
|
||||||
TypeError: If `mode` is not a str.
|
TypeError: If `mode` is not a str.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> from mindspore import Tensor
|
>>> from mindspore import Tensor
|
||||||
|
@ -4193,7 +4193,7 @@ class Adam(PrimitiveWithInfer):
|
||||||
TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor.
|
TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> import numpy as np
|
>>> import numpy as np
|
||||||
|
@ -6999,7 +6999,7 @@ class CTCLoss(PrimitiveWithInfer):
|
||||||
TypeError: If dtype of `labels_values` or `sequence_length` is not int32.
|
TypeError: If dtype of `labels_values` or `sequence_length` is not int32.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> np.random.seed(0)
|
>>> np.random.seed(0)
|
||||||
|
|
Loading…
Reference in New Issue