!6737 mobilenetv2 incremental learn -> fine tune

Merge pull request !6737 from yepei6/master_mobilenetv2
This commit is contained in:
mindspore-ci-bot 2020-09-24 09:53:21 +08:00 committed by Gitee
commit 55f9880ec9
8 changed files with 58 additions and 81 deletions

View File

@ -28,22 +28,17 @@ from src.utils import switch_precision, set_context
if __name__ == '__main__': if __name__ == '__main__':
args_opt = eval_parse_args() args_opt = eval_parse_args()
config = set_config(args_opt) config = set_config(args_opt)
set_context(config)
backbone_net, head_net, net = define_net(config, args_opt.is_training) backbone_net, head_net, net = define_net(config, args_opt.is_training)
#load the trained checkpoint file to the net for evaluation load_ckpt(net, args_opt.pretrain_ckpt)
if args_opt.head_ckpt:
load_ckpt(backbone_net, args_opt.pretrain_ckpt)
load_ckpt(head_net, args_opt.head_ckpt)
else:
load_ckpt(net, args_opt.pretrain_ckpt)
set_context(config)
switch_precision(net, mstype.float16, config) switch_precision(net, mstype.float16, config)
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, config=config) dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, config=config)
step_size = dataset.get_dataset_size() step_size = dataset.get_dataset_size()
if step_size == 0: if step_size == 0:
raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \ raise ValueError("The step_size of dataset is zero. Check if the images count of eval dataset is more \
than batch_size in config.py") than batch_size in config.py")
net.set_train(False) net.set_train(False)
@ -53,5 +48,3 @@ if __name__ == '__main__':
res = model.eval(dataset) res = model.eval(dataset)
print(f"result:{res}\npretrain_ckpt={args_opt.pretrain_ckpt}") print(f"result:{res}\npretrain_ckpt={args_opt.pretrain_ckpt}")
if args_opt.head_ckpt:
print(f"head_ckpt={args_opt.head_ckpt}")

View File

@ -43,7 +43,6 @@ run_ascend()
--platform=$1 \ --platform=$1 \
--dataset_path=$2 \ --dataset_path=$2 \
--pretrain_ckpt=$3 \ --pretrain_ckpt=$3 \
--head_ckpt=$4 \
&> ../eval.log & # dataset val folder path &> ../eval.log & # dataset val folder path
} }
@ -69,7 +68,6 @@ run_gpu()
--platform=$1 \ --platform=$1 \
--dataset_path=$2 \ --dataset_path=$2 \
--pretrain_ckpt=$3 \ --pretrain_ckpt=$3 \
--head_ckpt=$4 \
&> ../eval.log & # dataset train folder &> ../eval.log & # dataset train folder
} }
@ -95,17 +93,16 @@ run_cpu()
--platform=$1 \ --platform=$1 \
--dataset_path=$2 \ --dataset_path=$2 \
--pretrain_ckpt=$3 \ --pretrain_ckpt=$3 \
--head_ckpt=$4 \
&> ../eval.log & # dataset train folder &> ../eval.log & # dataset train folder
} }
if [ $# -gt 4 ] || [ $# -lt 3 ] if [ $# -ne 3 ]
then then
echo "Usage: echo "Usage:
Ascend: sh run_eval.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT] Ascend: sh run_eval.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT]
GPU: sh run_eval.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT] GPU: sh run_eval.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT]
CPU: sh run_eval.sh [PLATFORM] [DATASET_PATH] [BACKBONE_CKPT] [HEAD_CKPT]" CPU: sh run_eval.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT]"
exit 1 exit 1
fi fi
@ -123,5 +120,5 @@ elif [ $1 = "GPU" ] ; then
elif [ $1 = "Ascend" ] ; then elif [ $1 = "Ascend" ] ; then
run_ascend "$@" run_ascend "$@"
else else
echo "Unsupported device_target." echo "Unsupported platform."
fi; fi;

View File

@ -43,8 +43,8 @@ run_ascend()
--visible_devices=$3 \ --visible_devices=$3 \
--training_script=${BASEPATH}/../train.py \ --training_script=${BASEPATH}/../train.py \
--dataset_path=$5 \ --dataset_path=$5 \
--train_method=$6 \ --pretrain_ckpt=$6 \
--pretrain_ckpt=$7 \ --freeze_layer=$7 \
&> ../train.log & # dataset train folder &> ../train.log & # dataset train folder
} }
@ -76,8 +76,8 @@ run_gpu()
python ${BASEPATH}/../train.py \ python ${BASEPATH}/../train.py \
--platform=$1 \ --platform=$1 \
--dataset_path=$4 \ --dataset_path=$4 \
--train_method=$5 \ --pretrain_ckpt=$5 \
--pretrain_ckpt=$6 \ --freeze_layer=$6 \
&> ../train.log & # dataset train folder &> ../train.log & # dataset train folder
} }
@ -102,17 +102,17 @@ run_cpu()
python ${BASEPATH}/../train.py \ python ${BASEPATH}/../train.py \
--platform=$1 \ --platform=$1 \
--dataset_path=$2 \ --dataset_path=$2 \
--train_method=$3 \ --pretrain_ckpt=$3 \
--pretrain_ckpt=$4 \ --freeze_layer=$4 \
&> ../train.log & # dataset train folder &> ../train.log & # dataset train folder
} }
if [ $# -gt 7 ] || [ $# -lt 4 ] if [ $# -gt 7 ] || [ $# -lt 4 ]
then then
echo "Usage: echo "Usage:
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [TRAIN_METHOD] [CKPT_PATH] Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER]
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [TRAIN_METHOD] [CKPT_PATH] GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER]
CPU: sh run_train.sh CPU [DATASET_PATH] [TRAIN_METHOD] [CKPT_PATH]" CPU: sh run_train.sh CPU [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER]"
exit 1 exit 1
fi fi
@ -123,5 +123,5 @@ elif [ $1 = "GPU" ] ; then
elif [ $1 = "CPU" ] ; then elif [ $1 = "CPU" ] ; then
run_cpu "$@" run_cpu "$@"
else else
echo "Unsupported device_target." echo "Unsupported platform."
fi; fi;

View File

@ -41,11 +41,10 @@ def train_parse_args():
train_parser.add_argument('--platform', type=str, default="Ascend", choices=("CPU", "GPU", "Ascend"), \ train_parser.add_argument('--platform', type=str, default="Ascend", choices=("CPU", "GPU", "Ascend"), \
help='run platform, only support CPU, GPU and Ascend') help='run platform, only support CPU, GPU and Ascend')
train_parser.add_argument('--dataset_path', type=str, required=True, help='Dataset path') train_parser.add_argument('--dataset_path', type=str, required=True, help='Dataset path')
train_parser.add_argument('--train_method', type=str, choices=("train", "fine_tune", "incremental_learn"), \
help="\"fine_tune\"or \"incremental_learn\" if to fine tune the net after loading the ckpt, \"train\" to \
train from initialization model")
train_parser.add_argument('--pretrain_ckpt', type=str, default=None, help='Pretrained checkpoint path \ train_parser.add_argument('--pretrain_ckpt', type=str, default=None, help='Pretrained checkpoint path \
for fine tune or incremental learning') for fine tune or incremental learning')
train_parser.add_argument('--freeze_layer', type=str, default=None, choices=["none", "backbone"], \
help="freeze the weights of network from start to which layers")
train_parser.add_argument('--run_distribute', type=ast.literal_eval, default=True, help='Run distribute') train_parser.add_argument('--run_distribute', type=ast.literal_eval, default=True, help='Run distribute')
train_args = train_parser.parse_args() train_args = train_parser.parse_args()
train_args.is_training = True train_args.is_training = True
@ -58,8 +57,6 @@ def eval_parse_args():
eval_parser.add_argument('--dataset_path', type=str, required=True, help='Dataset path') eval_parser.add_argument('--dataset_path', type=str, required=True, help='Dataset path')
eval_parser.add_argument('--pretrain_ckpt', type=str, required=True, help='Pretrained checkpoint path \ eval_parser.add_argument('--pretrain_ckpt', type=str, required=True, help='Pretrained checkpoint path \
for fine tune or incremental learning') for fine tune or incremental learning')
eval_parser.add_argument('--head_ckpt', type=str, default=None, help='Pretrained checkpoint path \
for incremental learning')
eval_parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='If run distribute in GPU.') eval_parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='If run distribute in GPU.')
eval_args = eval_parser.parse_args() eval_args = eval_parser.parse_args()
eval_args.is_training = False eval_args.is_training = False

View File

@ -99,13 +99,12 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
def extract_features(net, dataset_path, config): def extract_features(net, dataset_path, config):
features_folder = dataset_path + '_features' features_folder = os.path.abspath(dataset_path) + '_features'
if not os.path.exists(features_folder): if not os.path.exists(features_folder):
os.makedirs(features_folder) os.makedirs(features_folder)
dataset = create_dataset(dataset_path=dataset_path, dataset = create_dataset(dataset_path=dataset_path,
do_train=False, do_train=False,
config=config, config=config)
repeat_num=1)
step_size = dataset.get_dataset_size() step_size = dataset.get_dataset_size()
if step_size == 0: if step_size == 0:
raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \ raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \
@ -122,5 +121,5 @@ def extract_features(net, dataset_path, config):
features = model.predict(Tensor(image)) features = model.predict(Tensor(image))
np.save(features_path, features.asnumpy()) np.save(features_path, features.asnumpy())
np.save(label_path, label) np.save(label_path, label)
print(f"Complete the batch {i}/{step_size}") print(f"Complete the batch {i+1}/{step_size}")
return step_size return step_size

View File

@ -298,8 +298,6 @@ class MobileNetV2(nn.Cell):
has_dropout (bool): Is dropout used. Default is false has_dropout (bool): Is dropout used. Default is false
inverted_residual_setting (list): Inverted residual settings. Default is None inverted_residual_setting (list): Inverted residual settings. Default is None
round_nearest (list): Channel round to . Default is 8 round_nearest (list): Channel round to . Default is 8
backbone(nn.Cell): Backbone of MobileNetV2.
head(nn.Cell): Classification head of MobileNetV2.
Returns: Returns:
Tensor, output tensor. Tensor, output tensor.

View File

@ -49,8 +49,7 @@ def context_device_init(config):
if config.run_distribute: if config.run_distribute:
context.set_auto_parallel_context(device_num=config.rank_size, context.set_auto_parallel_context(device_num=config.rank_size,
parallel_mode=ParallelMode.DATA_PARALLEL, parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True, gradients_mean=True)
all_reduce_fusion_config=[140])
init() init()
else: else:
raise ValueError("Only support CPU, GPU and Ascend.") raise ValueError("Only support CPU, GPU and Ascend.")
@ -82,6 +81,6 @@ def config_ckpoint(config, lr, step_size):
rank = get_rank() rank = get_rank()
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(rank) + "/" ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(rank) + "/"
ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck) ckpt_cb = ModelCheckpoint(prefix="mobilenetv2", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb] cb += [ckpt_cb]
return cb return cb

View File

@ -53,30 +53,23 @@ if __name__ == '__main__':
# define network # define network
backbone_net, head_net, net = define_net(config, args_opt.is_training) backbone_net, head_net, net = define_net(config, args_opt.is_training)
# load the ckpt file to the network for fine tune or incremental leaning if args_opt.pretrain_ckpt and args_opt.freeze_layer == "backbone":
if args_opt.pretrain_ckpt: load_ckpt(backbone_net, args_opt.pretrain_ckpt, trainable=False)
if args_opt.train_method == "fine_tune":
load_ckpt(net, args_opt.pretrain_ckpt)
elif args_opt.train_method == "incremental_learn":
load_ckpt(backbone_net, args_opt.pretrain_ckpt, trainable=False)
elif args_opt.train_method == "train":
pass
else:
raise ValueError("must input the usage of pretrain_ckpt when the pretrain_ckpt isn't None")
# CPU only support "incremental_learn"
if args_opt.train_method == "incremental_learn":
step_size = extract_features(backbone_net, args_opt.dataset_path, config) step_size = extract_features(backbone_net, args_opt.dataset_path, config)
net = head_net
elif args_opt.train_method in ("train", "fine_tune"): else:
if args_opt.platform == "CPU": if args_opt.platform == "CPU":
raise ValueError("Currently, CPU only support \"incremental_learn\", not \"fine_tune\" or \"train\".") raise ValueError("CPU only support fine tune the head net, doesn't support fine tune the all net")
if args_opt.pretrain_ckpt:
load_ckpt(backbone_net, args_opt.pretrain_ckpt)
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config) dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config)
step_size = dataset.get_dataset_size() step_size = dataset.get_dataset_size()
if step_size == 0:
raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \ if step_size == 0:
than batch_size in config.py") raise ValueError("The step_size of dataset is zero. Check if the images' count of train dataset is more \
than batch_size in config.py")
# Currently, only Ascend support switch precision. # Currently, only Ascend support switch precision.
switch_precision(net, mstype.float16, config) switch_precision(net, mstype.float16, config)
@ -99,15 +92,32 @@ if __name__ == '__main__':
total_epochs=epoch_size, total_epochs=epoch_size,
steps_per_epoch=step_size)) steps_per_epoch=step_size))
if args_opt.train_method == "incremental_learn": if args_opt.pretrain_ckpt is None or args_opt.freeze_layer == "none":
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay) loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, \
config.weight_decay, config.loss_scale)
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
network = WithLossCell(net, loss) cb = config_ckpoint(config, lr, step_size)
print("============== Starting Training ==============")
model.train(epoch_size, dataset, callbacks=cb)
print("============== End Training ==============")
else:
opt = Momentum(filter(lambda x: x.requires_grad, head_net.get_parameters()), lr, config.momentum, config.weight_decay)
network = WithLossCell(head_net, loss)
network = TrainOneStepCell(network, opt) network = TrainOneStepCell(network, opt)
network.set_train() network.set_train()
features_path = args_opt.dataset_path + '_features' features_path = args_opt.dataset_path + '_features'
idx_list = list(range(step_size)) idx_list = list(range(step_size))
rank = 0
if config.run_distribute:
rank = get_rank()
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
if not os.path.isdir(save_ckpt_path):
os.mkdir(save_ckpt_path)
for epoch in range(epoch_size): for epoch in range(epoch_size):
random.shuffle(idx_list) random.shuffle(idx_list)
@ -119,24 +129,8 @@ if __name__ == '__main__':
losses.append(network(feature, label).asnumpy()) losses.append(network(feature, label).asnumpy())
epoch_mseconds = (time.time()-epoch_start) * 1000 epoch_mseconds = (time.time()-epoch_start) * 1000
per_step_mseconds = epoch_mseconds / step_size per_step_mseconds = epoch_mseconds / step_size
print("epoch[{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}"\ print("epoch[{}/{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}"\
.format(epoch + 1, step_size, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses)))) .format(epoch + 1, epoch_size, step_size, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses))))
if (epoch + 1) % config.save_checkpoint_epochs == 0: if (epoch + 1) % config.save_checkpoint_epochs == 0:
rank = 0 save_checkpoint(net, os.path.join(save_ckpt_path, f"mobilenetv2_{epoch+1}.ckpt"))
if config.run_distribute:
rank = get_rank()
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
save_checkpoint(network, os.path.join(save_ckpt_path, \
f"mobilenetv2_head_{epoch+1}.ckpt"))
print("total cost {:5.4f} s".format(time.time() - start)) print("total cost {:5.4f} s".format(time.time() - start))
elif args_opt.train_method in ("train", "fine_tune"):
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, \
config.weight_decay, config.loss_scale)
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
cb = config_ckpoint(config, lr, step_size)
print("============== Starting Training ==============")
model.train(epoch_size, dataset, callbacks=cb)
print("============== End Training ==============")