Added lognormal distribuition

This commit is contained in:
peixu_ren 2020-08-07 15:49:44 -04:00
parent 3eff68f8aa
commit 23ff21edd8
6 changed files with 802 additions and 21 deletions

View File

@ -24,6 +24,7 @@ from .exponential import Exponential
from .uniform import Uniform
from .geometric import Geometric
from .categorical import Categorical
from .log_normal import LogNormal
__all__ = ['Distribution',
'TransformedDistribution',
@ -32,4 +33,6 @@ __all__ = ['Distribution',
'Exponential',
'Uniform',
'Categorical',
'Geometric',]
'Geometric',
'LogNormal',
]

View File

@ -76,7 +76,10 @@ class Distribution(Cell):
self._parameters[k] = param[k]
# some attributes
self.parameter_type = set_param_type(self.parameters['param_dict'], dtype)
if 'distribution' in self.parameters.keys():
self.parameter_type = self.parameters['distribution'].parameter_type
else:
self.parameter_type = set_param_type(self.parameters['param_dict'], dtype)
self._broadcast_shape = self._calc_broadcast_shape()
self._is_scalar_batch = self._check_is_scalar_batch()
@ -206,8 +209,8 @@ class Distribution(Cell):
"""
Check if the parameters used during initialization are scalars.
"""
if hasattr(self, 'distribution'):
return self._distribution.is_scalar_batch
if 'distribution' in self.parameters.keys():
return self.parameters['distribution'].is_scalar_batch
param_dict = self.parameters['param_dict']
for value in param_dict.values():
if value is None:
@ -220,8 +223,8 @@ class Distribution(Cell):
"""
Calculate the broadcast shape of the parameters used during initialization.
"""
if hasattr(self, 'distribution'):
return self._distribution.broadcast_shape
if 'distribution' in self.parameters.keys():
return self.parameters['distribution'].broadcast_shape
param_dict = self.parameters['param_dict']
broadcast_shape_tensor = None
for value in param_dict.values():

View File

@ -0,0 +1,235 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LogNormal Distribution"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
import mindspore.nn.probability.bijector as msb
import mindspore.nn.probability.distribution as msd
from ._utils.utils import check_distribution_name
from ._utils.custom_ops import exp_generic, expm1_generic, log_generic
class LogNormal(msd.TransformedDistribution):
"""
LogNormal distribution.
A log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose
logarithm is normally distributed. It is constructed as the exponential transformation of a Normal distribution.
Args:
loc (int, float, list, numpy.ndarray, Tensor, Parameter): The mean of the underlying Normal distribution.
scale (int, float, list, numpy.ndarray, Tensor, Parameter): The standard deviation of the underlying
Normal distribution.
seed (int): the seed used in sampling. The global seed is used if it is None. Default: None.
dtype (mindspore.dtype): type of the distribution. Default: mstype.float32.
name (str): the name of the distribution. Default: 'LogNormal'.
Note:
`scale` must be greater than zero.
`dist_spec_args` are `loc` and `scale`.
`dtype` must be a float type because LogNormal distributions are continuous.
Examples:
>>> # To initialize a LogNormal distribution of `loc` 3.0 and `scale` 4.0.
>>> n = msd.LogNormal(3.0, 4.0, dtype=mstype.float32)
>>>
>>> # The following creates two independent LogNormal distributions.
>>> n = msd.LogNormal([3.0, 3.0], [4.0, 4.0], dtype=mstype.float32)
>>>
>>> # A LogNormal distribution can be initilize without arguments.
>>> # In this case, `loc` and `scale` must be passed in during function calls.
>>> n = msd.LogNormal(dtype=mstype.float32)
>>>
>>> # To use a LogNormal distribution in a network.
>>> class net(Cell):
>>> def __init__(self):
>>> super(net, self).__init__():
>>> self.n1 = msd.LogNormal(0.0, 1.0, dtype=mstype.float32)
>>> self.n2 = msd.LogNormal(dtype=mstype.float32)
>>>
>>> # The following calls are valid in construct.
>>> def construct(self, value, loc_b, scale_b, loc_a, scale_a):
>>>
>>> # Private interfaces of probability functions corresponding to public interfaces, including
>>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, have the same
>>> # arguments as follows.
>>> # Args:
>>> # value (Tensor): the value to be evaluated.
>>> # loc (Tensor): the loc of distribution. Default: None. If `loc` is passed in as None,
>>> # the mean of the underlying Normal distribution will be used.
>>> # scale (Tensor): the scale of distribution. Default: None. If `scale` is passed in as None,
>>> # the standard deviation of the underlying Normal distribution will be used.
>>>
>>> # Examples of `prob`.
>>> # Similar calls can be made to other probability functions
>>> # by replacing 'prob' by the name of the function.
>>> ans = self.n1.prob(value)
>>> # Evaluate with respect to distribution b.
>>> ans = self.n1.prob(value, loc_b, scale_b)
>>> # `loc` and `scale` must be passed in during function calls since they were not passed in construct.
>>> ans = self.n2.prob(value, loc_a, scale_a)
>>>
>>>
>>> # Functions `mean`, `sd`, `var`, and `entropy` have the same arguments.
>>> # Args:
>>> # loc (Tensor): the loc of distribution. Default: None. If `loc` is passed in as None,
>>> # the mean of the underlying Normal distribution will be used.
>>> # scale (Tensor): the scale of distribution. Default: None. If `scale` is passed in as None,
>>> # the standard deviation of the underlying Normal distribution will be used.
>>>
>>> # Example of `mean`. `sd`, `var`, and `entropy` are similar.
>>> ans = self.n1.mean() # return 0.0
>>> ans = self.n1.mean(loc_b, scale_b) # return mean_b
>>> # `loc` and `scale` must be passed in during function calls since they were not passed in construct.
>>> ans = self.n2.mean(loc_a, scale_a)
>>>
>>>
>>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same:
>>> # Args:
>>> # dist (str): the type of the distributions. Only "Normal" is supported.
>>> # loc_b (Tensor): the loc of distribution b.
>>> # scale_b (Tensor): the scale distribution b.
>>> # loc_a (Tensor): the loc of distribution a. Default: None. If `loc` is passed in as None,
>>> # the mean of the underlying Normal distribution will be used.
>>> # scale_a (Tensor): the scale distribution a. Default: None. If `scale` is passed in as None,
>>> # the standard deviation of the underlying Normal distribution will be used.
>>>
>>> # Examples of `kl_loss`. `cross_entropy` is similar.
>>> ans = self.n1.kl_loss('Normal', loc_b, scale_b)
>>> ans = self.n1.kl_loss('Normal', loc_b, scale_b, loc_a, scale_a)
>>> # Additional `loc` and `scale` must be passed in since they were not passed in construct.
>>> ans = self.n2.kl_loss('Normal', loc_b, scale_b, loc_a, scale_a)
>>>
>>> # Examples of `sample`.
>>> # Args:
>>> # shape (tuple): the shape of the sample. Default: ()
>>> # loc (Tensor): the loc of the distribution. Default: None. If `loc` is passed in as None,
>>> # the mean of the underlying Normal distribution will be used.
>>> # scale (Tensor): the scale of the distribution. Default: None. If `scale` is passed in as None,
>>> # the standard deviation of the underlying Normal distribution will be used.
>>> ans = self.n1.sample()
>>> ans = self.n1.sample((2,3))
>>> ans = self.n1.sample((2,3), loc_b, scale_b)
>>> ans = self.n2.sample((2,3), loc_a, scale_a)
"""
def __init__(self,
loc=None,
scale=None,
seed=0,
dtype=mstype.float32,
name="LogNormal"):
"""
Constructor of LogNormal distribution.
"""
super(LogNormal, self).__init__(distribution=msd.Normal(loc, scale, dtype=dtype),
bijector=msb.Exp(),
dtype=dtype, seed=seed, name=name)
self.log_2pi = np.log(2 * np.pi)
#ops needed for the class
self.exp = exp_generic
self.expm1 = expm1_generic
self.log = log_generic
self.const = P.ScalarToArray()
self.erf = P.Erf()
self.fill = P.Fill()
self.shape = P.Shape()
self.sq = P.Square()
self.sqrt = P.Sqrt()
self.zeroslike = P.ZerosLike()
@property
def loc(self):
"""Distribution parameter for the pre-transformed mean."""
return self.distribution("mean")
@property
def scale(self):
"""Distribution parameter for the pre-transformed standard deviation."""
return self.distribution("sd")
def extend_repr(self):
if self.is_scalar_batch:
str_info = f'loc = {self._mean_value}, scale = {self._sd_value}'
else:
str_info = f'batch_shape = {self._broadcast_shape}'
return str_info
def _mean(self, loc=None, scale=None):
"""
The mean of the distribution.
"""
mean, sd = self._check_param_type(loc, scale)
var = self.distribution("var", mean=mean, sd=sd)
return self.exp(mean + 0.5 * var)
def _mode(self, loc=None, scale=None):
"""
The mode of the distribution.
"""
mean, sd = self._check_param_type(loc, scale)
var = self.distribution("var", mean=mean, sd=sd)
return self.exp(mean - var)
def _var(self, loc=None, scale=None):
"""
The varience of the distribution.
"""
mean, sd = self._check_param_type(loc, scale)
var = self.distribution("var", mean=mean, sd=sd)
return self.expm1(var) * self.exp(2. * mean + var)
def _entropy(self, loc=None, scale=None):
r"""
Evaluate entropy.
.. math::
H(X) = μ + 0.5 + \log(σ) + 0.5 * \log(2pi)
"""
mean, sd = self._check_param_type(loc, scale)
return mean + 0.5 + self.log(sd) + 0.5 * self.log_2pi
def _cross_entropy(self, dist, loc_b, scale_b, loc_a=None, scale_a=None):
r"""
Evaluate cross entropy between lognormal distributions.
Args:
dist (str): The type of the distributions. Should be "LogNormal" in this case.
loc_b (Tensor): The loc of distribution b.
scale_b (Tensor): The scale of distribution b.
loc_a (Tensor): The loc of distribution a. Default: None.
scale_a (Tensor): The scale of distribution a. Default: None.
"""
check_distribution_name(dist, 'LogNormal')
return self._entropy(loc_a, scale_a) + self._kl_loss(dist, loc_b, scale_b, loc_a, scale_a)
def _kl_loss(self, dist, loc_b, scale_b, loc_a=None, scale_a=None):
r"""
Evaluate LogNormal-LogNormal kl divergence, i.e. KL(a||b).
Args:
dist (str): The type of the distributions. Should be "LogNormal" in this case.
loc_b (Tensor): The loc of distribution b.
scale_b (Tensor): The scale of distribution b.
loc_a (Tensor): The loc of distribution a. Default: None.
scale_a (Tensor): The scale of distribution a. Default: None.
.. math::
KL(a||b) = 0.5 * (\fract{MEAN(a)}{STD(b)} - \fract{MEAN(b)}{STD(b)}) ^ 2 +
0.5 * EXPM1(2 * (\log(STD(a)) - \log(STD(b))) - (\log(STD(a)) - \log(STD(b)))
"""
check_distribution_name(dist, 'LogNormal')
return self.distribution("kl_loss", 'Normal', loc_b, scale_b, loc_a, scale_a)

View File

@ -30,6 +30,8 @@ class TransformedDistribution(Distribution):
Args:
bijector (Bijector): The transformation to perform.
distribution (Distribution): The original distribution.
dtype (mindspore.dtype): The type of the event samples.
seed (int): The seed is used in sampling. The global seed is used if it is None.
name (str): The name of the transformed distribution. Default: 'transformed_distribution'.
Note:
@ -98,38 +100,38 @@ class TransformedDistribution(Distribution):
def is_linear_transformation(self):
return self._is_linear_transformation
def _cdf(self, *args, **kwargs):
def _cdf(self, value, *args, **kwargs):
r"""
.. math::
Y = g(X)
P(Y <= a) = P(X <= g^{-1}(a))
"""
inverse_value = self.bijector("inverse", *args, **kwargs)
return self.distribution("cdf", inverse_value)
inverse_value = self.bijector("inverse", value)
return self.distribution("cdf", inverse_value, *args, **kwargs)
def _log_cdf(self, *args, **kwargs):
return self.log(self._cdf(*args, **kwargs))
def _log_cdf(self, value, *args, **kwargs):
return self.log(self._cdf(value, *args, **kwargs))
def _survival_function(self, *args, **kwargs):
return 1.0 - self._cdf(*args, **kwargs)
def _survival_function(self, value, *args, **kwargs):
return 1.0 - self._cdf(value, *args, **kwargs)
def _log_survival(self, *args, **kwargs):
return self.log(self._survival_function(*args, **kwargs))
def _log_survival(self, value, *args, **kwargs):
return self.log(self._survival_function(value, *args, **kwargs))
def _log_prob(self, *args, **kwargs):
def _log_prob(self, value, *args, **kwargs):
r"""
.. math::
Y = g(X)
Py(a) = Px(g^{-1}(a)) * (g^{-1})'(a)
\log(Py(a)) = \log(Px(g^{-1}(a))) + \log((g^{-1})'(a))
"""
inverse_value = self.bijector("inverse", *args, **kwargs)
unadjust_prob = self.distribution("log_prob", inverse_value)
log_jacobian = self.bijector("inverse_log_jacobian", *args, **kwargs)
inverse_value = self.bijector("inverse", value)
unadjust_prob = self.distribution("log_prob", inverse_value, *args, **kwargs)
log_jacobian = self.bijector("inverse_log_jacobian", value)
return unadjust_prob + log_jacobian
def _prob(self, *args, **kwargs):
return self.exp(self._log_prob(*args, **kwargs))
def _prob(self, value, *args, **kwargs):
return self.exp(self._log_prob(value, *args, **kwargs))
def _sample(self, *args, **kwargs):
org_sample = self.distribution("sample", *args, **kwargs)

View File

@ -0,0 +1,322 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for LogNormal distribution"""
import numpy as np
from scipy import stats
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Prob(nn.Cell):
"""
Test class: probability of LogNormal distribution.
"""
def __init__(self):
super(Prob, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self, x_):
return self.ln.prob(x_)
def test_pdf():
"""
Test pdf.
"""
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_pdf = lognorm_benchmark.pdf([1.0, 2.0]).astype(np.float32)
pdf = Prob()
output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
class LogProb(nn.Cell):
"""
Test class: log probability of LogNormal distribution.
"""
def __init__(self):
super(LogProb, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self, x_):
return self.ln.log_prob(x_)
def test_log_likelihood():
"""
Test log_pdf.
"""
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_logpdf = lognorm_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
logprob = LogProb()
output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
class KL(nn.Cell):
"""
Test class: kl_loss of LogNormal distribution.
"""
def __init__(self):
super(KL, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([0.4]), dtype=dtype.float32)
def construct(self, x_, y_):
return self.ln.kl_loss('LogNormal', x_, y_)
def test_kl_loss():
"""
Test kl_loss.
"""
mean_a = np.array([0.3]).astype(np.float32)
sd_a = np.array([0.4]).astype(np.float32)
mean_b = np.array([1.0]).astype(np.float32)
sd_b = np.array([1.0]).astype(np.float32)
diff_log_scale = np.log(sd_a) - np.log(sd_b)
squared_diff = np.square(mean_a / sd_b - mean_b / sd_b)
expect_kl_loss = 0.5 * squared_diff + 0.5 * np.expm1(2 * diff_log_scale) - diff_log_scale
kl_loss = KL()
mean = Tensor(mean_b, dtype=dtype.float32)
sd = Tensor(sd_b, dtype=dtype.float32)
output = kl_loss(mean, sd)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
class Basics(nn.Cell):
"""
Test class: mean/sd/mode of LogNormal distribution.
"""
def __init__(self):
super(Basics, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self):
return self.ln.mean(), self.ln.sd(), self.ln.mode()
def test_basics():
"""
Test mean/standard deviation/mode.
"""
basics = Basics()
mean, sd, mode = basics()
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_mean = lognorm_benchmark.mean().astype(np.float32)
expect_sd = lognorm_benchmark.std().astype(np.float32)
expect_mode = (lognorm_benchmark.median() / np.exp(np.square([[0.2], [0.4]]))).astype(np.float32)
tol = 1e-6
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
class Sampling(nn.Cell):
"""
Test class: sample of LogNormal distribution.
"""
def __init__(self, shape, seed=0):
super(Sampling, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), seed=seed, dtype=dtype.float32)
self.shape = shape
def construct(self, mean=None, sd=None):
return self.ln.sample(self.shape, mean, sd)
def test_sample():
"""
Test sample.
"""
shape = (2, 3)
seed = 10
mean = Tensor([2.0], dtype=dtype.float32)
sd = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
sample = Sampling(shape, seed=seed)
output = sample(mean, sd)
assert output.shape == (2, 3, 3)
class CDF(nn.Cell):
"""
Test class: cdf of LogNormal distribution.
"""
def __init__(self):
super(CDF, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self, x_):
return self.ln.cdf(x_)
def test_cdf():
"""
Test cdf.
"""
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_cdf = lognorm_benchmark.cdf([1.0, 2.0]).astype(np.float32)
cdf = CDF()
output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 2e-5
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
class LogCDF(nn.Cell):
"""
Test class: log_cdf of Mormal distribution.
"""
def __init__(self):
super(LogCDF, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self, x_):
return self.ln.log_cdf(x_)
def test_log_cdf():
"""
Test log cdf.
"""
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_logcdf = lognorm_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
logcdf = LogCDF()
output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 1e-4
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
class SF(nn.Cell):
"""
Test class: survival function of LogNormal distribution.
"""
def __init__(self):
super(SF, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self, x_):
return self.ln.survival_function(x_)
def test_survival():
"""
Test log_survival.
"""
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_survival = lognorm_benchmark.sf([1.0, 2.0]).astype(np.float32)
survival_function = SF()
output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 2e-5
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
class LogSF(nn.Cell):
"""
Test class: log survival function of LogNormal distribution.
"""
def __init__(self):
super(LogSF, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self, x_):
return self.ln.log_survival(x_)
def test_log_survival():
"""
Test log_survival.
"""
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_log_survival = lognorm_benchmark.logsf([1.0, 2.0]).astype(np.float32)
log_survival = LogSF()
output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 5e-4
assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
class EntropyH(nn.Cell):
"""
Test class: entropy of LogNormal distribution.
"""
def __init__(self):
super(EntropyH, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
def construct(self):
return self.ln.entropy()
def test_entropy():
"""
Test entropy.
"""
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
expect_entropy = lognorm_benchmark.entropy().astype(np.float32)
entropy = EntropyH()
output = entropy()
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
class CrossEntropy(nn.Cell):
"""
Test class: cross entropy between LogNormal distributions.
"""
def __init__(self):
super(CrossEntropy, self).__init__()
self.ln = msd.LogNormal(np.array([0.3]), np.array([0.4]), dtype=dtype.float32)
def construct(self, x_, y_):
entropy = self.ln.entropy()
kl_loss = self.ln.kl_loss('LogNormal', x_, y_)
h_sum_kl = entropy + kl_loss
cross_entropy = self.ln.cross_entropy('LogNormal', x_, y_)
return h_sum_kl - cross_entropy
def test_cross_entropy():
"""
Test cross_entropy.
"""
cross_entropy = CrossEntropy()
mean = Tensor([1.0], dtype=dtype.float32)
sd = Tensor([1.0], dtype=dtype.float32)
diff = cross_entropy(mean, sd)
tol = 1e-6
assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
class Net(nn.Cell):
"""
Test class: expand single distribution instance to multiple graphs
by specifying the attributes.
"""
def __init__(self):
super(Net, self).__init__()
self.LogNormal = msd.LogNormal(0., 1., dtype=dtype.float32)
def construct(self, x_, y_):
kl = self.LogNormal.kl_loss('LogNormal', x_, y_)
prob = self.LogNormal.prob(kl)
return prob
def test_multiple_graphs():
"""
Test multiple graphs case.
"""
prob = Net()
mean_a = np.array([0.0]).astype(np.float32)
sd_a = np.array([1.0]).astype(np.float32)
mean_b = np.array([1.0]).astype(np.float32)
sd_b = np.array([1.0]).astype(np.float32)
ans = prob(Tensor(mean_b), Tensor(sd_b))
diff_log_scale = np.log(sd_a) - np.log(sd_b)
squared_diff = np.square(mean_a / sd_b - mean_b / sd_b)
expect_kl_loss = 0.5 * squared_diff + 0.5 * \
np.expm1(2 * diff_log_scale) - diff_log_scale
lognorm_benchmark = stats.lognorm(s=np.array([1.]), scale=np.exp(np.array([0.])))
expect_prob = lognorm_benchmark.pdf(expect_kl_loss).astype(np.float32)
tol = 1e-6
assert (np.abs(ans.asnumpy() - expect_prob) < tol).all()

View File

@ -0,0 +1,216 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.LogNormal.
"""
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_lognormal_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.LogNormal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_type():
with pytest.raises(TypeError):
msd.LogNormal(0., 1., dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.LogNormal(0., 1., name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.LogNormal(0., 1., seed='seed')
def test_sd():
with pytest.raises(ValueError):
msd.LogNormal(0., 0.)
with pytest.raises(ValueError):
msd.LogNormal(0., -1.)
def test_arguments():
"""
args passing during initialization.
"""
n = msd.LogNormal()
assert isinstance(n, msd.Distribution)
n = msd.LogNormal([3.0], [4.0], dtype=dtype.float32)
assert isinstance(n, msd.Distribution)
class LogNormalProb(nn.Cell):
"""
LogNormal distribution: initialize with mean/sd.
"""
def __init__(self):
super(LogNormalProb, self).__init__()
self.lognormal = msd.LogNormal(3.0, 4.0, dtype=dtype.float32)
def construct(self, value):
prob = self.lognormal.prob(value)
log_prob = self.lognormal.log_prob(value)
cdf = self.lognormal.cdf(value)
log_cdf = self.lognormal.log_cdf(value)
sf = self.lognormal.survival_function(value)
log_sf = self.lognormal.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_lognormal_prob():
"""
Test probability functions: passing value through construct.
"""
net = LogNormalProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class LogNormalProb1(nn.Cell):
"""
LogNormal distribution: initialize without mean/sd.
"""
def __init__(self):
super(LogNormalProb1, self).__init__()
self.lognormal = msd.LogNormal()
def construct(self, value, mean, sd):
prob = self.lognormal.prob(value, mean, sd)
log_prob = self.lognormal.log_prob(value, mean, sd)
cdf = self.lognormal.cdf(value, mean, sd)
log_cdf = self.lognormal.log_cdf(value, mean, sd)
sf = self.lognormal.survival_function(value, mean, sd)
log_sf = self.lognormal.log_survival(value, mean, sd)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_lognormal_prob1():
"""
Test probability functions: passing mean/sd, value through construct.
"""
net = LogNormalProb1()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mean = Tensor([0.0], dtype=dtype.float32)
sd = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mean, sd)
assert isinstance(ans, Tensor)
class LogNormalKl(nn.Cell):
"""
Test class: kl_loss of LogNormal distribution.
"""
def __init__(self):
super(LogNormalKl, self).__init__()
self.n1 = msd.LogNormal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = msd.LogNormal(dtype=dtype.float32)
def construct(self, mean_b, sd_b, mean_a, sd_a):
kl1 = self.n1.kl_loss('LogNormal', mean_b, sd_b)
kl2 = self.n2.kl_loss('LogNormal', mean_b, sd_b, mean_a, sd_a)
return kl1 + kl2
def test_kl():
"""
Test kl_loss.
"""
net = LogNormalKl()
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(mean_b, sd_b, mean_a, sd_a)
assert isinstance(ans, Tensor)
class LogNormalCrossEntropy(nn.Cell):
"""
Test class: cross_entropy of LogNormal distribution.
"""
def __init__(self):
super(LogNormalCrossEntropy, self).__init__()
self.n1 = msd.LogNormal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = msd.LogNormal(dtype=dtype.float32)
def construct(self, mean_b, sd_b, mean_a, sd_a):
h1 = self.n1.cross_entropy('LogNormal', mean_b, sd_b)
h2 = self.n2.cross_entropy('LogNormal', mean_b, sd_b, mean_a, sd_a)
return h1 + h2
def test_cross_entropy():
"""
Test cross entropy between LogNormal distributions.
"""
net = LogNormalCrossEntropy()
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(mean_b, sd_b, mean_a, sd_a)
assert isinstance(ans, Tensor)
class LogNormalBasics(nn.Cell):
"""
Test class: basic mean/sd function.
"""
def __init__(self):
super(LogNormalBasics, self).__init__()
self.n = msd.LogNormal(3.0, 4.0, dtype=dtype.float32)
def construct(self):
mean = self.n.mean()
sd = self.n.sd()
mode = self.n.mode()
entropy = self.n.entropy()
return mean + sd + mode + entropy
def test_bascis():
"""
Test mean/sd/mode/entropy functionality of LogNormal.
"""
net = LogNormalBasics()
ans = net()
assert isinstance(ans, Tensor)
class LogNormalConstruct(nn.Cell):
"""
LogNormal distribution: going through construct.
"""
def __init__(self):
super(LogNormalConstruct, self).__init__()
self.lognormal = msd.LogNormal(3.0, 4.0)
self.lognormal1 = msd.LogNormal()
def construct(self, value, mean, sd):
prob = self.lognormal('prob', value)
prob1 = self.lognormal('prob', value, mean, sd)
prob2 = self.lognormal1('prob', value, mean, sd)
return prob + prob1 + prob2
def test_lognormal_construct():
"""
Test probability function going through construct.
"""
net = LogNormalConstruct()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mean = Tensor([0.0], dtype=dtype.float32)
sd = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mean, sd)
assert isinstance(ans, Tensor)