forked from mindspore-Ecosystem/mindspore
Added lognormal distribuition
This commit is contained in:
parent
3eff68f8aa
commit
23ff21edd8
|
@ -24,6 +24,7 @@ from .exponential import Exponential
|
|||
from .uniform import Uniform
|
||||
from .geometric import Geometric
|
||||
from .categorical import Categorical
|
||||
from .log_normal import LogNormal
|
||||
|
||||
__all__ = ['Distribution',
|
||||
'TransformedDistribution',
|
||||
|
@ -32,4 +33,6 @@ __all__ = ['Distribution',
|
|||
'Exponential',
|
||||
'Uniform',
|
||||
'Categorical',
|
||||
'Geometric',]
|
||||
'Geometric',
|
||||
'LogNormal',
|
||||
]
|
||||
|
|
|
@ -76,7 +76,10 @@ class Distribution(Cell):
|
|||
self._parameters[k] = param[k]
|
||||
|
||||
# some attributes
|
||||
self.parameter_type = set_param_type(self.parameters['param_dict'], dtype)
|
||||
if 'distribution' in self.parameters.keys():
|
||||
self.parameter_type = self.parameters['distribution'].parameter_type
|
||||
else:
|
||||
self.parameter_type = set_param_type(self.parameters['param_dict'], dtype)
|
||||
self._broadcast_shape = self._calc_broadcast_shape()
|
||||
self._is_scalar_batch = self._check_is_scalar_batch()
|
||||
|
||||
|
@ -206,8 +209,8 @@ class Distribution(Cell):
|
|||
"""
|
||||
Check if the parameters used during initialization are scalars.
|
||||
"""
|
||||
if hasattr(self, 'distribution'):
|
||||
return self._distribution.is_scalar_batch
|
||||
if 'distribution' in self.parameters.keys():
|
||||
return self.parameters['distribution'].is_scalar_batch
|
||||
param_dict = self.parameters['param_dict']
|
||||
for value in param_dict.values():
|
||||
if value is None:
|
||||
|
@ -220,8 +223,8 @@ class Distribution(Cell):
|
|||
"""
|
||||
Calculate the broadcast shape of the parameters used during initialization.
|
||||
"""
|
||||
if hasattr(self, 'distribution'):
|
||||
return self._distribution.broadcast_shape
|
||||
if 'distribution' in self.parameters.keys():
|
||||
return self.parameters['distribution'].broadcast_shape
|
||||
param_dict = self.parameters['param_dict']
|
||||
broadcast_shape_tensor = None
|
||||
for value in param_dict.values():
|
||||
|
|
|
@ -0,0 +1,235 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""LogNormal Distribution"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.nn.probability.bijector as msb
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from ._utils.utils import check_distribution_name
|
||||
from ._utils.custom_ops import exp_generic, expm1_generic, log_generic
|
||||
|
||||
class LogNormal(msd.TransformedDistribution):
|
||||
"""
|
||||
LogNormal distribution.
|
||||
A log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose
|
||||
logarithm is normally distributed. It is constructed as the exponential transformation of a Normal distribution.
|
||||
|
||||
Args:
|
||||
loc (int, float, list, numpy.ndarray, Tensor, Parameter): The mean of the underlying Normal distribution.
|
||||
scale (int, float, list, numpy.ndarray, Tensor, Parameter): The standard deviation of the underlying
|
||||
Normal distribution.
|
||||
seed (int): the seed used in sampling. The global seed is used if it is None. Default: None.
|
||||
dtype (mindspore.dtype): type of the distribution. Default: mstype.float32.
|
||||
name (str): the name of the distribution. Default: 'LogNormal'.
|
||||
|
||||
Note:
|
||||
`scale` must be greater than zero.
|
||||
`dist_spec_args` are `loc` and `scale`.
|
||||
`dtype` must be a float type because LogNormal distributions are continuous.
|
||||
|
||||
Examples:
|
||||
>>> # To initialize a LogNormal distribution of `loc` 3.0 and `scale` 4.0.
|
||||
>>> n = msd.LogNormal(3.0, 4.0, dtype=mstype.float32)
|
||||
>>>
|
||||
>>> # The following creates two independent LogNormal distributions.
|
||||
>>> n = msd.LogNormal([3.0, 3.0], [4.0, 4.0], dtype=mstype.float32)
|
||||
>>>
|
||||
>>> # A LogNormal distribution can be initilize without arguments.
|
||||
>>> # In this case, `loc` and `scale` must be passed in during function calls.
|
||||
>>> n = msd.LogNormal(dtype=mstype.float32)
|
||||
>>>
|
||||
>>> # To use a LogNormal distribution in a network.
|
||||
>>> class net(Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(net, self).__init__():
|
||||
>>> self.n1 = msd.LogNormal(0.0, 1.0, dtype=mstype.float32)
|
||||
>>> self.n2 = msd.LogNormal(dtype=mstype.float32)
|
||||
>>>
|
||||
>>> # The following calls are valid in construct.
|
||||
>>> def construct(self, value, loc_b, scale_b, loc_a, scale_a):
|
||||
>>>
|
||||
>>> # Private interfaces of probability functions corresponding to public interfaces, including
|
||||
>>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, have the same
|
||||
>>> # arguments as follows.
|
||||
>>> # Args:
|
||||
>>> # value (Tensor): the value to be evaluated.
|
||||
>>> # loc (Tensor): the loc of distribution. Default: None. If `loc` is passed in as None,
|
||||
>>> # the mean of the underlying Normal distribution will be used.
|
||||
>>> # scale (Tensor): the scale of distribution. Default: None. If `scale` is passed in as None,
|
||||
>>> # the standard deviation of the underlying Normal distribution will be used.
|
||||
>>>
|
||||
>>> # Examples of `prob`.
|
||||
>>> # Similar calls can be made to other probability functions
|
||||
>>> # by replacing 'prob' by the name of the function.
|
||||
>>> ans = self.n1.prob(value)
|
||||
>>> # Evaluate with respect to distribution b.
|
||||
>>> ans = self.n1.prob(value, loc_b, scale_b)
|
||||
>>> # `loc` and `scale` must be passed in during function calls since they were not passed in construct.
|
||||
>>> ans = self.n2.prob(value, loc_a, scale_a)
|
||||
>>>
|
||||
>>>
|
||||
>>> # Functions `mean`, `sd`, `var`, and `entropy` have the same arguments.
|
||||
>>> # Args:
|
||||
>>> # loc (Tensor): the loc of distribution. Default: None. If `loc` is passed in as None,
|
||||
>>> # the mean of the underlying Normal distribution will be used.
|
||||
>>> # scale (Tensor): the scale of distribution. Default: None. If `scale` is passed in as None,
|
||||
>>> # the standard deviation of the underlying Normal distribution will be used.
|
||||
>>>
|
||||
>>> # Example of `mean`. `sd`, `var`, and `entropy` are similar.
|
||||
>>> ans = self.n1.mean() # return 0.0
|
||||
>>> ans = self.n1.mean(loc_b, scale_b) # return mean_b
|
||||
>>> # `loc` and `scale` must be passed in during function calls since they were not passed in construct.
|
||||
>>> ans = self.n2.mean(loc_a, scale_a)
|
||||
>>>
|
||||
>>>
|
||||
>>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same:
|
||||
>>> # Args:
|
||||
>>> # dist (str): the type of the distributions. Only "Normal" is supported.
|
||||
>>> # loc_b (Tensor): the loc of distribution b.
|
||||
>>> # scale_b (Tensor): the scale distribution b.
|
||||
>>> # loc_a (Tensor): the loc of distribution a. Default: None. If `loc` is passed in as None,
|
||||
>>> # the mean of the underlying Normal distribution will be used.
|
||||
>>> # scale_a (Tensor): the scale distribution a. Default: None. If `scale` is passed in as None,
|
||||
>>> # the standard deviation of the underlying Normal distribution will be used.
|
||||
>>>
|
||||
>>> # Examples of `kl_loss`. `cross_entropy` is similar.
|
||||
>>> ans = self.n1.kl_loss('Normal', loc_b, scale_b)
|
||||
>>> ans = self.n1.kl_loss('Normal', loc_b, scale_b, loc_a, scale_a)
|
||||
>>> # Additional `loc` and `scale` must be passed in since they were not passed in construct.
|
||||
>>> ans = self.n2.kl_loss('Normal', loc_b, scale_b, loc_a, scale_a)
|
||||
>>>
|
||||
>>> # Examples of `sample`.
|
||||
>>> # Args:
|
||||
>>> # shape (tuple): the shape of the sample. Default: ()
|
||||
>>> # loc (Tensor): the loc of the distribution. Default: None. If `loc` is passed in as None,
|
||||
>>> # the mean of the underlying Normal distribution will be used.
|
||||
>>> # scale (Tensor): the scale of the distribution. Default: None. If `scale` is passed in as None,
|
||||
>>> # the standard deviation of the underlying Normal distribution will be used.
|
||||
>>> ans = self.n1.sample()
|
||||
>>> ans = self.n1.sample((2,3))
|
||||
>>> ans = self.n1.sample((2,3), loc_b, scale_b)
|
||||
>>> ans = self.n2.sample((2,3), loc_a, scale_a)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
loc=None,
|
||||
scale=None,
|
||||
seed=0,
|
||||
dtype=mstype.float32,
|
||||
name="LogNormal"):
|
||||
"""
|
||||
Constructor of LogNormal distribution.
|
||||
"""
|
||||
super(LogNormal, self).__init__(distribution=msd.Normal(loc, scale, dtype=dtype),
|
||||
bijector=msb.Exp(),
|
||||
dtype=dtype, seed=seed, name=name)
|
||||
|
||||
self.log_2pi = np.log(2 * np.pi)
|
||||
|
||||
#ops needed for the class
|
||||
self.exp = exp_generic
|
||||
self.expm1 = expm1_generic
|
||||
self.log = log_generic
|
||||
self.const = P.ScalarToArray()
|
||||
self.erf = P.Erf()
|
||||
self.fill = P.Fill()
|
||||
self.shape = P.Shape()
|
||||
self.sq = P.Square()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.zeroslike = P.ZerosLike()
|
||||
|
||||
@property
|
||||
def loc(self):
|
||||
"""Distribution parameter for the pre-transformed mean."""
|
||||
return self.distribution("mean")
|
||||
|
||||
@property
|
||||
def scale(self):
|
||||
"""Distribution parameter for the pre-transformed standard deviation."""
|
||||
return self.distribution("sd")
|
||||
|
||||
def extend_repr(self):
|
||||
if self.is_scalar_batch:
|
||||
str_info = f'loc = {self._mean_value}, scale = {self._sd_value}'
|
||||
else:
|
||||
str_info = f'batch_shape = {self._broadcast_shape}'
|
||||
return str_info
|
||||
|
||||
def _mean(self, loc=None, scale=None):
|
||||
"""
|
||||
The mean of the distribution.
|
||||
"""
|
||||
mean, sd = self._check_param_type(loc, scale)
|
||||
var = self.distribution("var", mean=mean, sd=sd)
|
||||
return self.exp(mean + 0.5 * var)
|
||||
|
||||
def _mode(self, loc=None, scale=None):
|
||||
"""
|
||||
The mode of the distribution.
|
||||
"""
|
||||
mean, sd = self._check_param_type(loc, scale)
|
||||
var = self.distribution("var", mean=mean, sd=sd)
|
||||
return self.exp(mean - var)
|
||||
|
||||
def _var(self, loc=None, scale=None):
|
||||
"""
|
||||
The varience of the distribution.
|
||||
"""
|
||||
mean, sd = self._check_param_type(loc, scale)
|
||||
var = self.distribution("var", mean=mean, sd=sd)
|
||||
return self.expm1(var) * self.exp(2. * mean + var)
|
||||
|
||||
def _entropy(self, loc=None, scale=None):
|
||||
r"""
|
||||
Evaluate entropy.
|
||||
|
||||
.. math::
|
||||
H(X) = μ + 0.5 + \log(σ) + 0.5 * \log(2pi)
|
||||
"""
|
||||
mean, sd = self._check_param_type(loc, scale)
|
||||
return mean + 0.5 + self.log(sd) + 0.5 * self.log_2pi
|
||||
|
||||
def _cross_entropy(self, dist, loc_b, scale_b, loc_a=None, scale_a=None):
|
||||
r"""
|
||||
Evaluate cross entropy between lognormal distributions.
|
||||
|
||||
Args:
|
||||
dist (str): The type of the distributions. Should be "LogNormal" in this case.
|
||||
loc_b (Tensor): The loc of distribution b.
|
||||
scale_b (Tensor): The scale of distribution b.
|
||||
loc_a (Tensor): The loc of distribution a. Default: None.
|
||||
scale_a (Tensor): The scale of distribution a. Default: None.
|
||||
"""
|
||||
check_distribution_name(dist, 'LogNormal')
|
||||
return self._entropy(loc_a, scale_a) + self._kl_loss(dist, loc_b, scale_b, loc_a, scale_a)
|
||||
|
||||
def _kl_loss(self, dist, loc_b, scale_b, loc_a=None, scale_a=None):
|
||||
r"""
|
||||
Evaluate LogNormal-LogNormal kl divergence, i.e. KL(a||b).
|
||||
|
||||
Args:
|
||||
dist (str): The type of the distributions. Should be "LogNormal" in this case.
|
||||
loc_b (Tensor): The loc of distribution b.
|
||||
scale_b (Tensor): The scale of distribution b.
|
||||
loc_a (Tensor): The loc of distribution a. Default: None.
|
||||
scale_a (Tensor): The scale of distribution a. Default: None.
|
||||
|
||||
.. math::
|
||||
KL(a||b) = 0.5 * (\fract{MEAN(a)}{STD(b)} - \fract{MEAN(b)}{STD(b)}) ^ 2 +
|
||||
0.5 * EXPM1(2 * (\log(STD(a)) - \log(STD(b))) - (\log(STD(a)) - \log(STD(b)))
|
||||
"""
|
||||
check_distribution_name(dist, 'LogNormal')
|
||||
return self.distribution("kl_loss", 'Normal', loc_b, scale_b, loc_a, scale_a)
|
|
@ -30,6 +30,8 @@ class TransformedDistribution(Distribution):
|
|||
Args:
|
||||
bijector (Bijector): The transformation to perform.
|
||||
distribution (Distribution): The original distribution.
|
||||
dtype (mindspore.dtype): The type of the event samples.
|
||||
seed (int): The seed is used in sampling. The global seed is used if it is None.
|
||||
name (str): The name of the transformed distribution. Default: 'transformed_distribution'.
|
||||
|
||||
Note:
|
||||
|
@ -98,38 +100,38 @@ class TransformedDistribution(Distribution):
|
|||
def is_linear_transformation(self):
|
||||
return self._is_linear_transformation
|
||||
|
||||
def _cdf(self, *args, **kwargs):
|
||||
def _cdf(self, value, *args, **kwargs):
|
||||
r"""
|
||||
.. math::
|
||||
Y = g(X)
|
||||
P(Y <= a) = P(X <= g^{-1}(a))
|
||||
"""
|
||||
inverse_value = self.bijector("inverse", *args, **kwargs)
|
||||
return self.distribution("cdf", inverse_value)
|
||||
inverse_value = self.bijector("inverse", value)
|
||||
return self.distribution("cdf", inverse_value, *args, **kwargs)
|
||||
|
||||
def _log_cdf(self, *args, **kwargs):
|
||||
return self.log(self._cdf(*args, **kwargs))
|
||||
def _log_cdf(self, value, *args, **kwargs):
|
||||
return self.log(self._cdf(value, *args, **kwargs))
|
||||
|
||||
def _survival_function(self, *args, **kwargs):
|
||||
return 1.0 - self._cdf(*args, **kwargs)
|
||||
def _survival_function(self, value, *args, **kwargs):
|
||||
return 1.0 - self._cdf(value, *args, **kwargs)
|
||||
|
||||
def _log_survival(self, *args, **kwargs):
|
||||
return self.log(self._survival_function(*args, **kwargs))
|
||||
def _log_survival(self, value, *args, **kwargs):
|
||||
return self.log(self._survival_function(value, *args, **kwargs))
|
||||
|
||||
def _log_prob(self, *args, **kwargs):
|
||||
def _log_prob(self, value, *args, **kwargs):
|
||||
r"""
|
||||
.. math::
|
||||
Y = g(X)
|
||||
Py(a) = Px(g^{-1}(a)) * (g^{-1})'(a)
|
||||
\log(Py(a)) = \log(Px(g^{-1}(a))) + \log((g^{-1})'(a))
|
||||
"""
|
||||
inverse_value = self.bijector("inverse", *args, **kwargs)
|
||||
unadjust_prob = self.distribution("log_prob", inverse_value)
|
||||
log_jacobian = self.bijector("inverse_log_jacobian", *args, **kwargs)
|
||||
inverse_value = self.bijector("inverse", value)
|
||||
unadjust_prob = self.distribution("log_prob", inverse_value, *args, **kwargs)
|
||||
log_jacobian = self.bijector("inverse_log_jacobian", value)
|
||||
return unadjust_prob + log_jacobian
|
||||
|
||||
def _prob(self, *args, **kwargs):
|
||||
return self.exp(self._log_prob(*args, **kwargs))
|
||||
def _prob(self, value, *args, **kwargs):
|
||||
return self.exp(self._log_prob(value, *args, **kwargs))
|
||||
|
||||
def _sample(self, *args, **kwargs):
|
||||
org_sample = self.distribution("sample", *args, **kwargs)
|
||||
|
|
|
@ -0,0 +1,322 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for LogNormal distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Prob(nn.Cell):
|
||||
"""
|
||||
Test class: probability of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.ln.prob(x_)
|
||||
|
||||
def test_pdf():
|
||||
"""
|
||||
Test pdf.
|
||||
"""
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_pdf = lognorm_benchmark.pdf([1.0, 2.0]).astype(np.float32)
|
||||
pdf = Prob()
|
||||
output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
|
||||
|
||||
class LogProb(nn.Cell):
|
||||
"""
|
||||
Test class: log probability of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.ln.log_prob(x_)
|
||||
|
||||
def test_log_likelihood():
|
||||
"""
|
||||
Test log_pdf.
|
||||
"""
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_logpdf = lognorm_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
|
||||
logprob = LogProb()
|
||||
output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
|
||||
|
||||
class KL(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([0.4]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
return self.ln.kl_loss('LogNormal', x_, y_)
|
||||
|
||||
def test_kl_loss():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
mean_a = np.array([0.3]).astype(np.float32)
|
||||
sd_a = np.array([0.4]).astype(np.float32)
|
||||
|
||||
mean_b = np.array([1.0]).astype(np.float32)
|
||||
sd_b = np.array([1.0]).astype(np.float32)
|
||||
|
||||
diff_log_scale = np.log(sd_a) - np.log(sd_b)
|
||||
squared_diff = np.square(mean_a / sd_b - mean_b / sd_b)
|
||||
expect_kl_loss = 0.5 * squared_diff + 0.5 * np.expm1(2 * diff_log_scale) - diff_log_scale
|
||||
|
||||
kl_loss = KL()
|
||||
mean = Tensor(mean_b, dtype=dtype.float32)
|
||||
sd = Tensor(sd_b, dtype=dtype.float32)
|
||||
output = kl_loss(mean, sd)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
|
||||
|
||||
class Basics(nn.Cell):
|
||||
"""
|
||||
Test class: mean/sd/mode of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
return self.ln.mean(), self.ln.sd(), self.ln.mode()
|
||||
|
||||
def test_basics():
|
||||
"""
|
||||
Test mean/standard deviation/mode.
|
||||
"""
|
||||
basics = Basics()
|
||||
mean, sd, mode = basics()
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_mean = lognorm_benchmark.mean().astype(np.float32)
|
||||
expect_sd = lognorm_benchmark.std().astype(np.float32)
|
||||
expect_mode = (lognorm_benchmark.median() / np.exp(np.square([[0.2], [0.4]]))).astype(np.float32)
|
||||
tol = 1e-6
|
||||
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
|
||||
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
|
||||
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
|
||||
|
||||
class Sampling(nn.Cell):
|
||||
"""
|
||||
Test class: sample of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), seed=seed, dtype=dtype.float32)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, mean=None, sd=None):
|
||||
return self.ln.sample(self.shape, mean, sd)
|
||||
|
||||
def test_sample():
|
||||
"""
|
||||
Test sample.
|
||||
"""
|
||||
shape = (2, 3)
|
||||
seed = 10
|
||||
mean = Tensor([2.0], dtype=dtype.float32)
|
||||
sd = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
|
||||
sample = Sampling(shape, seed=seed)
|
||||
output = sample(mean, sd)
|
||||
assert output.shape == (2, 3, 3)
|
||||
|
||||
class CDF(nn.Cell):
|
||||
"""
|
||||
Test class: cdf of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.ln.cdf(x_)
|
||||
|
||||
def test_cdf():
|
||||
"""
|
||||
Test cdf.
|
||||
"""
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_cdf = lognorm_benchmark.cdf([1.0, 2.0]).astype(np.float32)
|
||||
cdf = CDF()
|
||||
output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 2e-5
|
||||
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
|
||||
|
||||
class LogCDF(nn.Cell):
|
||||
"""
|
||||
Test class: log_cdf of Mormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.ln.log_cdf(x_)
|
||||
|
||||
def test_log_cdf():
|
||||
"""
|
||||
Test log cdf.
|
||||
"""
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_logcdf = lognorm_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
|
||||
logcdf = LogCDF()
|
||||
output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 1e-4
|
||||
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
|
||||
|
||||
class SF(nn.Cell):
|
||||
"""
|
||||
Test class: survival function of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.ln.survival_function(x_)
|
||||
|
||||
def test_survival():
|
||||
"""
|
||||
Test log_survival.
|
||||
"""
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_survival = lognorm_benchmark.sf([1.0, 2.0]).astype(np.float32)
|
||||
survival_function = SF()
|
||||
output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 2e-5
|
||||
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
|
||||
|
||||
class LogSF(nn.Cell):
|
||||
"""
|
||||
Test class: log survival function of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.ln.log_survival(x_)
|
||||
|
||||
def test_log_survival():
|
||||
"""
|
||||
Test log_survival.
|
||||
"""
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_log_survival = lognorm_benchmark.logsf([1.0, 2.0]).astype(np.float32)
|
||||
log_survival = LogSF()
|
||||
output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 5e-4
|
||||
assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
|
||||
|
||||
class EntropyH(nn.Cell):
|
||||
"""
|
||||
Test class: entropy of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
return self.ln.entropy()
|
||||
|
||||
def test_entropy():
|
||||
"""
|
||||
Test entropy.
|
||||
"""
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([[0.2], [0.4]]), scale=np.exp(np.array([0.3])))
|
||||
expect_entropy = lognorm_benchmark.entropy().astype(np.float32)
|
||||
entropy = EntropyH()
|
||||
output = entropy()
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
|
||||
|
||||
class CrossEntropy(nn.Cell):
|
||||
"""
|
||||
Test class: cross entropy between LogNormal distributions.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.ln = msd.LogNormal(np.array([0.3]), np.array([0.4]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
entropy = self.ln.entropy()
|
||||
kl_loss = self.ln.kl_loss('LogNormal', x_, y_)
|
||||
h_sum_kl = entropy + kl_loss
|
||||
cross_entropy = self.ln.cross_entropy('LogNormal', x_, y_)
|
||||
return h_sum_kl - cross_entropy
|
||||
|
||||
def test_cross_entropy():
|
||||
"""
|
||||
Test cross_entropy.
|
||||
"""
|
||||
cross_entropy = CrossEntropy()
|
||||
mean = Tensor([1.0], dtype=dtype.float32)
|
||||
sd = Tensor([1.0], dtype=dtype.float32)
|
||||
diff = cross_entropy(mean, sd)
|
||||
tol = 1e-6
|
||||
assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""
|
||||
Test class: expand single distribution instance to multiple graphs
|
||||
by specifying the attributes.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.LogNormal = msd.LogNormal(0., 1., dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
kl = self.LogNormal.kl_loss('LogNormal', x_, y_)
|
||||
prob = self.LogNormal.prob(kl)
|
||||
return prob
|
||||
|
||||
def test_multiple_graphs():
|
||||
"""
|
||||
Test multiple graphs case.
|
||||
"""
|
||||
prob = Net()
|
||||
mean_a = np.array([0.0]).astype(np.float32)
|
||||
sd_a = np.array([1.0]).astype(np.float32)
|
||||
mean_b = np.array([1.0]).astype(np.float32)
|
||||
sd_b = np.array([1.0]).astype(np.float32)
|
||||
ans = prob(Tensor(mean_b), Tensor(sd_b))
|
||||
|
||||
diff_log_scale = np.log(sd_a) - np.log(sd_b)
|
||||
squared_diff = np.square(mean_a / sd_b - mean_b / sd_b)
|
||||
expect_kl_loss = 0.5 * squared_diff + 0.5 * \
|
||||
np.expm1(2 * diff_log_scale) - diff_log_scale
|
||||
lognorm_benchmark = stats.lognorm(s=np.array([1.]), scale=np.exp(np.array([0.])))
|
||||
expect_prob = lognorm_benchmark.pdf(expect_kl_loss).astype(np.float32)
|
||||
|
||||
tol = 1e-6
|
||||
assert (np.abs(ans.asnumpy() - expect_prob) < tol).all()
|
|
@ -0,0 +1,216 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.probability.distribution.LogNormal.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
def test_lognormal_shape_errpr():
|
||||
"""
|
||||
Invalid shapes.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
msd.LogNormal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
|
||||
def test_type():
|
||||
with pytest.raises(TypeError):
|
||||
msd.LogNormal(0., 1., dtype=dtype.int32)
|
||||
|
||||
def test_name():
|
||||
with pytest.raises(TypeError):
|
||||
msd.LogNormal(0., 1., name=1.0)
|
||||
|
||||
def test_seed():
|
||||
with pytest.raises(TypeError):
|
||||
msd.LogNormal(0., 1., seed='seed')
|
||||
|
||||
def test_sd():
|
||||
with pytest.raises(ValueError):
|
||||
msd.LogNormal(0., 0.)
|
||||
with pytest.raises(ValueError):
|
||||
msd.LogNormal(0., -1.)
|
||||
|
||||
def test_arguments():
|
||||
"""
|
||||
args passing during initialization.
|
||||
"""
|
||||
n = msd.LogNormal()
|
||||
assert isinstance(n, msd.Distribution)
|
||||
n = msd.LogNormal([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(n, msd.Distribution)
|
||||
|
||||
|
||||
class LogNormalProb(nn.Cell):
|
||||
"""
|
||||
LogNormal distribution: initialize with mean/sd.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalProb, self).__init__()
|
||||
self.lognormal = msd.LogNormal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.lognormal.prob(value)
|
||||
log_prob = self.lognormal.log_prob(value)
|
||||
cdf = self.lognormal.cdf(value)
|
||||
log_cdf = self.lognormal.log_cdf(value)
|
||||
sf = self.lognormal.survival_function(value)
|
||||
log_sf = self.lognormal.log_survival(value)
|
||||
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
||||
|
||||
def test_lognormal_prob():
|
||||
"""
|
||||
Test probability functions: passing value through construct.
|
||||
"""
|
||||
net = LogNormalProb()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
ans = net(value)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
|
||||
class LogNormalProb1(nn.Cell):
|
||||
"""
|
||||
LogNormal distribution: initialize without mean/sd.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalProb1, self).__init__()
|
||||
self.lognormal = msd.LogNormal()
|
||||
|
||||
def construct(self, value, mean, sd):
|
||||
prob = self.lognormal.prob(value, mean, sd)
|
||||
log_prob = self.lognormal.log_prob(value, mean, sd)
|
||||
cdf = self.lognormal.cdf(value, mean, sd)
|
||||
log_cdf = self.lognormal.log_cdf(value, mean, sd)
|
||||
sf = self.lognormal.survival_function(value, mean, sd)
|
||||
log_sf = self.lognormal.log_survival(value, mean, sd)
|
||||
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
||||
|
||||
def test_lognormal_prob1():
|
||||
"""
|
||||
Test probability functions: passing mean/sd, value through construct.
|
||||
"""
|
||||
net = LogNormalProb1()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
mean = Tensor([0.0], dtype=dtype.float32)
|
||||
sd = Tensor([1.0], dtype=dtype.float32)
|
||||
ans = net(value, mean, sd)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class LogNormalKl(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalKl, self).__init__()
|
||||
self.n1 = msd.LogNormal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = msd.LogNormal(dtype=dtype.float32)
|
||||
|
||||
def construct(self, mean_b, sd_b, mean_a, sd_a):
|
||||
kl1 = self.n1.kl_loss('LogNormal', mean_b, sd_b)
|
||||
kl2 = self.n2.kl_loss('LogNormal', mean_b, sd_b, mean_a, sd_a)
|
||||
return kl1 + kl2
|
||||
|
||||
def test_kl():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
net = LogNormalKl()
|
||||
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||
ans = net(mean_b, sd_b, mean_a, sd_a)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class LogNormalCrossEntropy(nn.Cell):
|
||||
"""
|
||||
Test class: cross_entropy of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalCrossEntropy, self).__init__()
|
||||
self.n1 = msd.LogNormal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = msd.LogNormal(dtype=dtype.float32)
|
||||
|
||||
def construct(self, mean_b, sd_b, mean_a, sd_a):
|
||||
h1 = self.n1.cross_entropy('LogNormal', mean_b, sd_b)
|
||||
h2 = self.n2.cross_entropy('LogNormal', mean_b, sd_b, mean_a, sd_a)
|
||||
return h1 + h2
|
||||
|
||||
def test_cross_entropy():
|
||||
"""
|
||||
Test cross entropy between LogNormal distributions.
|
||||
"""
|
||||
net = LogNormalCrossEntropy()
|
||||
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||
ans = net(mean_b, sd_b, mean_a, sd_a)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class LogNormalBasics(nn.Cell):
|
||||
"""
|
||||
Test class: basic mean/sd function.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalBasics, self).__init__()
|
||||
self.n = msd.LogNormal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.n.mean()
|
||||
sd = self.n.sd()
|
||||
mode = self.n.mode()
|
||||
entropy = self.n.entropy()
|
||||
return mean + sd + mode + entropy
|
||||
|
||||
def test_bascis():
|
||||
"""
|
||||
Test mean/sd/mode/entropy functionality of LogNormal.
|
||||
"""
|
||||
net = LogNormalBasics()
|
||||
ans = net()
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
|
||||
class LogNormalConstruct(nn.Cell):
|
||||
"""
|
||||
LogNormal distribution: going through construct.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalConstruct, self).__init__()
|
||||
self.lognormal = msd.LogNormal(3.0, 4.0)
|
||||
self.lognormal1 = msd.LogNormal()
|
||||
|
||||
def construct(self, value, mean, sd):
|
||||
prob = self.lognormal('prob', value)
|
||||
prob1 = self.lognormal('prob', value, mean, sd)
|
||||
prob2 = self.lognormal1('prob', value, mean, sd)
|
||||
return prob + prob1 + prob2
|
||||
|
||||
def test_lognormal_construct():
|
||||
"""
|
||||
Test probability function going through construct.
|
||||
"""
|
||||
net = LogNormalConstruct()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
mean = Tensor([0.0], dtype=dtype.float32)
|
||||
sd = Tensor([1.0], dtype=dtype.float32)
|
||||
ans = net(value, mean, sd)
|
||||
assert isinstance(ans, Tensor)
|
Loading…
Reference in New Issue