forked from mindspore-Ecosystem/mindspore
fuzz check
This commit is contained in:
parent
e2c0a72420
commit
09ace3e825
|
@ -19,7 +19,7 @@
|
|||
|
||||
int RankInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **outputs, size_t outputs_size,
|
||||
OpParameter *parameter) {
|
||||
int check_ret = CheckAugmentWithMinSize(inputs, inputs_size, outputs, outputs_size, parameter, 1, 1);
|
||||
int check_ret = CheckAugmentNullSize(inputs, inputs_size, outputs, outputs_size, parameter, 1, 1);
|
||||
if (check_ret != NNACL_OK) {
|
||||
return check_ret;
|
||||
}
|
||||
|
|
|
@ -29,8 +29,7 @@ int SparseToDenseInferShape(const TensorC *const *inputs, size_t inputs_size, Te
|
|||
return NNACL_INPUT_TENSOR_ERROR;
|
||||
}
|
||||
const TensorC *input1 = inputs[1];
|
||||
const TensorC *input2 = inputs[2];
|
||||
SetDataTypeFormat(output, input2);
|
||||
SetDataTypeFormat(output, input1);
|
||||
if (!InferFlag(inputs, inputs_size)) {
|
||||
return NNACL_INFER_INVALID;
|
||||
}
|
||||
|
|
|
@ -82,6 +82,12 @@ int ArithmeticSelfCPUKernel::Prepare() {
|
|||
CHECK_NOT_EQUAL_RETURN(in_tensors_.size(), 1);
|
||||
CHECK_NOT_EQUAL_RETURN(out_tensors_.size(), 1);
|
||||
|
||||
auto out_tensor_category = out_tensors_[0]->category();
|
||||
if (out_tensor_category == mindspore::lite::CONST_SCALAR || out_tensor_category == mindspore::lite::CONST_TENSOR) {
|
||||
MS_LOG(ERROR) << "out_tensor category is invalid.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -36,6 +36,13 @@ int PadCPUKernel::Prepare() {
|
|||
CHECK_NULL_RETURN(in_tensors_[0]);
|
||||
CHECK_NULL_RETURN(in_tensors_[1]);
|
||||
CHECK_NULL_RETURN(out_tensors_[0]);
|
||||
|
||||
auto input_data_type = in_tensors_[0]->data_type();
|
||||
if (!(input_data_type == kNumberTypeFloat32 || input_data_type == kNumberTypeFloat ||
|
||||
input_data_type == kNumberTypeFloat16)) {
|
||||
MS_LOG(ERROR) << "Unsupported data type of input tensor for Pad op: " << input_data_type;
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -27,10 +27,14 @@ using mindspore::schema::PrimitiveType_PowFusion;
|
|||
namespace mindspore::kernel {
|
||||
int PowerCPUKernel::Prepare() {
|
||||
MS_CHECK_TRUE_MSG(in_tensors_.size() == C2NUM, RET_ERROR, "Only support Power op with 2 inputs.");
|
||||
auto exp_datatype = in_tensors_.at(1)->data_type();
|
||||
MS_CHECK_TRUE_MSG((exp_datatype == kNumberTypeFloat32 || exp_datatype == kNumberTypeFloat ||
|
||||
exp_datatype == kNumberTypeInt32 || exp_datatype == kNumberTypeInt),
|
||||
RET_ERROR, "unsupported datatype of exponent for Power op.");
|
||||
auto base_data_type = in_tensors_.at(0)->data_type();
|
||||
MS_CHECK_TRUE_MSG((base_data_type == kNumberTypeFloat32 || base_data_type == kNumberTypeFloat ||
|
||||
base_data_type == kNumberTypeFloat16),
|
||||
RET_ERROR, "unsupported data type of exponent for Power op.");
|
||||
auto exp_data_type = in_tensors_.at(1)->data_type();
|
||||
MS_CHECK_TRUE_MSG((exp_data_type == kNumberTypeFloat32 || exp_data_type == kNumberTypeFloat ||
|
||||
exp_data_type == kNumberTypeInt32 || exp_data_type == kNumberTypeInt),
|
||||
RET_ERROR, "unsupported data type of exponent for Power op.");
|
||||
CHECK_LESS_RETURN(out_tensors_.size(), 1);
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -68,6 +68,7 @@ int ReverseCPUKernel::ReSize() {
|
|||
free(tmp_);
|
||||
tmp_ = nullptr;
|
||||
}
|
||||
MS_CHECK_INT_MUL_NOT_OVERFLOW(data_size_, static_cast<int>(sizeof(int)), RET_ERROR);
|
||||
tmp_ = reinterpret_cast<int *>(malloc(data_size_ * static_cast<int>(sizeof(int))));
|
||||
if (tmp_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Reverse Malloc tmp_ error!";
|
||||
|
|
Loading…
Reference in New Issue