mindspore/model_zoo/official/nlp/lstm/train.py

119 lines
5.3 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################train lstm example on aclImdb########################
"""
import os
import numpy as np
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.dataset import convert_to_mindrecord
from src.dataset import lstm_create_dataset
from src.lr_schedule import get_lr
from src.lstm import SentimentNet
from mindspore import Tensor, nn, Model, context
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor
from mindspore.train.serialization import load_param_into_net, load_checkpoint
from mindspore.communication.management import init, get_rank
from mindspore.context import ParallelMode
def modelarts_pre_process():
config.ckpt_path = os.path.join(config.output_path, config.ckpt_path)
@moxing_wrapper(pre_process=modelarts_pre_process)
def train_lstm():
""" train lstm """
print('\ntrain.py config: \n', config)
_enable_graph_kernel = config.enable_graph_kernel == "true" and config.device_target == "GPU"
context.set_context(
mode=context.GRAPH_MODE,
save_graphs=False,
enable_graph_kernel=_enable_graph_kernel,
device_target=config.device_target)
rank = 0
device_num = 1
if config.device_target == 'Ascend' and config.distribute == "true":
init()
device_num = config.device_num # get_device_num()
rank = get_rank()
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, \
device_num=device_num)
if config.preprocess == "true":
import shutil
if os.path.exists(config.preprocess_path):
shutil.rmtree(config.preprocess_path)
print("============== Starting Data Pre-processing ==============")
convert_to_mindrecord(config.embed_size, config.aclimdb_path, config.preprocess_path, config.glove_path)
embedding_table = np.loadtxt(os.path.join(config.preprocess_path, "weight.txt")).astype(np.float32)
# DynamicRNN in this network on Ascend platform only support the condition that the shape of input_size
# and hiddle_size is multiples of 16, this problem will be solved later.
if config.device_target == 'Ascend':
pad_num = int(np.ceil(config.embed_size / 16) * 16 - config.embed_size)
if pad_num > 0:
embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant')
config.embed_size = int(np.ceil(config.embed_size / 16) * 16)
network = SentimentNet(vocab_size=embedding_table.shape[0],
embed_size=config.embed_size,
num_hiddens=config.num_hiddens,
num_layers=config.num_layers,
bidirectional=config.bidirectional,
num_classes=config.num_classes,
weight=Tensor(embedding_table),
batch_size=config.batch_size)
# pre_trained
if config.pre_trained:
load_param_into_net(network, load_checkpoint(config.pre_trained))
ds_train = lstm_create_dataset(config.preprocess_path, config.batch_size, 1, device_num=device_num, rank=rank)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
if config.dynamic_lr:
lr = Tensor(get_lr(global_step=config.global_step,
lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs,
total_epochs=config.num_epochs,
steps_per_epoch=ds_train.get_dataset_size(),
lr_adjust_epoch=config.lr_adjust_epoch))
else:
lr = config.learning_rate
opt = nn.Momentum(network.trainable_params(), lr, config.momentum)
loss_cb = LossMonitor()
model = Model(network, loss, opt, {'acc': Accuracy()})
print("============== Starting Training ==============")
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="lstm", directory=config.ckpt_path, config=config_ck)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
if config.device_target == "CPU":
model.train(config.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb], dataset_sink_mode=False)
else:
model.train(config.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("============== Training Success ==============")
if __name__ == '__main__':
train_lstm()