forked from mindspore-Ecosystem/mindspore
81 lines
2.2 KiB
YAML
81 lines
2.2 KiB
YAML
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
|
enable_modelarts: False
|
|
data_url: ""
|
|
train_url: ""
|
|
checkpoint_url: ""
|
|
data_path: "/cache/data"
|
|
output_path: "/cache/train"
|
|
load_path: "/cache/checkpoint_path"
|
|
checkpoint_path: './checkpoint/'
|
|
checkpoint_file: './checkpoint/lstm-20_390.ckpt'
|
|
device_target: Ascend
|
|
enable_profiling: False
|
|
|
|
# ==============================================================================
|
|
# LSTM CONFIG IN ASCEND for 1p training
|
|
num_classes: 2
|
|
momentum: 0.9
|
|
num_epochs: 20
|
|
batch_size: 64
|
|
embed_size: 300
|
|
num_hiddens: 128
|
|
num_layers: 2
|
|
bidirectional: True
|
|
save_checkpoint_steps: 7800
|
|
keep_checkpoint_max: 10
|
|
dynamic_lr: True
|
|
lr_init: 0.05
|
|
lr_end: 0.01
|
|
lr_max: 0.1
|
|
lr_adjust_epoch: 6
|
|
warmup_epochs: 1
|
|
global_step: 0
|
|
|
|
# MindSpore LSTM Example - train.py
|
|
preprocess: 'false'
|
|
aclimdb_path: "./aclImdb"
|
|
glove_path: "/cache/data"
|
|
preprocess_path: "/cache/train/preprocess"
|
|
ckpt_path: './ckpt_lstm/'
|
|
pre_trained: '' # None
|
|
device_num: 1
|
|
distribute: "false"
|
|
enable_graph_kernel: "true"
|
|
|
|
# export.py
|
|
ckpt_file: './ckpt_lstm/lstm-20_390.ckpt'
|
|
device_id: 0
|
|
file_name: "lstm"
|
|
file_format: "AIR"
|
|
|
|
# LSTM Postprocess
|
|
label_dir: ''
|
|
result_dir: "./result_Files"
|
|
|
|
# preprocess
|
|
result_path: './preprocess_Result/'
|
|
|
|
---
|
|
# Config description for each option
|
|
enable_modelarts: 'Whether training on modelarts, default: False'
|
|
data_url: 'Dataset url for obs'
|
|
train_url: 'Training output url for obs'
|
|
data_path: 'Dataset path for local'
|
|
output_path: 'Training output path for local'
|
|
|
|
preprocess: 'whether to preprocess data.'
|
|
aclimdb_path: 'path where the dataset is stored.'
|
|
glove_path: 'path where the GloVe is stored.'
|
|
preprocess_path: 'path where the pre-process data is stored.'
|
|
ckpt_path: 'the path to save the checkpoint file.'
|
|
pre_trained: 'the pretrained checkpoint file path.'
|
|
device_target: 'the target device to run, support "GPU", "CPU". Default: "Ascend".'
|
|
device_num: 'Use device nums, default is 1.'
|
|
distribute: 'Run distribute, default is false.'
|
|
enable_graph_kernel: 'Accelerate by graph kernel, default is true.'
|
|
|
|
---
|
|
device_target: ['Ascend', 'GPU', 'CPU']
|
|
distribute: ['true', 'false']
|
|
enable_graph_kernel: ['true', 'false']
|
|
file_format: ['AIR', 'ONNX', 'MINDIR'] |