mindspore/model_zoo/official/gnn/bgcf/train.py

182 lines
7.2 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
BGCF training script.
"""
import os
import time
from mindspore import Tensor
import mindspore.context as context
from mindspore.common import dtype as mstype
from mindspore.train.serialization import save_checkpoint
from mindspore.common import set_seed
from src.bgcf import BGCF
from src.utils import convert_item_id
from src.callback import TrainBGCF
from src.dataset import load_graph, create_dataset
from model_utils.config import config
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id, get_device_num
set_seed(1)
def modelarts_pre_process():
'''modelarts pre process function.'''
def unzip(zip_file, save_dir):
import zipfile
s_time = time.time()
if not os.path.exists(os.path.join(save_dir, config.modelarts_dataset_unzip_name)):
zip_isexist = zipfile.is_zipfile(zip_file)
if zip_isexist:
fz = zipfile.ZipFile(zip_file, 'r')
data_num = len(fz.namelist())
print("Extract Start...")
print("unzip file num: {}".format(data_num))
data_print = int(data_num / 100) if data_num > 100 else 1
i = 0
for file in fz.namelist():
if i % data_print == 0:
print("unzip percent: {}%".format(int(i * 100 / data_num)), flush=True)
i += 1
fz.extract(file, save_dir)
print("cost time: {}min:{}s.".format(int((time.time() - s_time) / 60),
int(int(time.time() - s_time) % 60)))
print("Extract Done.")
else:
print("This is not zip.")
else:
print("Zip has been extracted.")
if config.need_modelarts_dataset_unzip:
zip_file_1 = os.path.join(config.data_path, config.modelarts_dataset_unzip_name + ".zip")
save_dir_1 = os.path.join(config.data_path)
sync_lock = "/tmp/unzip_sync.lock"
# Each server contains 8 devices as most.
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
print("Zip file path: ", zip_file_1)
print("Unzip file save dir: ", save_dir_1)
unzip(zip_file_1, save_dir_1)
print("===Finish extract data synchronization===")
try:
os.mknod(sync_lock)
except IOError:
pass
while True:
if os.path.exists(sync_lock):
break
time.sleep(1)
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
config.ckptpath = os.path.join(config.output_path, config.ckptpath)
if not os.path.isdir(config.ckptpath):
os.makedirs(config.ckptpath)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_train():
"""Train"""
context.set_context(mode=context.GRAPH_MODE,
device_target=config.device_target,
save_graphs=False)
if config.device_target == "Ascend":
context.set_context(device_id=get_device_id())
if config.device_target == "GPU":
context.set_context(enable_graph_kernel=True)
train_graph, _, sampled_graph_list = load_graph(config.datapath)
train_ds = create_dataset(train_graph, sampled_graph_list, config.workers, batch_size=config.batch_pairs,
num_samples=config.raw_neighs, num_bgcn_neigh=config.gnew_neighs, num_neg=config.num_neg)
num_user = train_graph.graph_info()["node_num"][0]
num_item = train_graph.graph_info()["node_num"][1]
num_pairs = train_graph.graph_info()['edge_num'][0]
bgcfnet = BGCF([config.input_dim, num_user, num_item],
config.embedded_dimension,
config.activation,
config.neighbor_dropout,
num_user,
num_item,
config.input_dim)
train_net = TrainBGCF(bgcfnet, config.num_neg, config.l2, config.learning_rate,
config.epsilon, config.dist_reg)
train_net.set_train(True)
itr = train_ds.create_dict_iterator(config.num_epoch, output_numpy=True)
num_iter = int(num_pairs / config.batch_pairs)
for _epoch in range(1, config.num_epoch + 1):
epoch_start = time.time()
iter_num = 1
for data in itr:
u_id = Tensor(data["users"], mstype.int32)
pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32)
neg_item_id = Tensor(convert_item_id(data["neg_item_id"], num_user), mstype.int32)
pos_users = Tensor(data["pos_users"], mstype.int32)
pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32)
u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32)
u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32)
u_gnew_neighs = Tensor(convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32)
i_group_nodes = Tensor(convert_item_id(data["i_group_nodes"], num_user), mstype.int32)
i_neighs = Tensor(data["i_neighs"], mstype.int32)
i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32)
neg_group_nodes = Tensor(convert_item_id(data["neg_group_nodes"], num_user), mstype.int32)
neg_neighs = Tensor(data["neg_neighs"], mstype.int32)
neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32)
train_loss = train_net(u_id,
pos_item_id,
neg_item_id,
pos_users,
pos_items,
u_group_nodes,
u_neighs,
u_gnew_neighs,
i_group_nodes,
i_neighs,
i_gnew_neighs,
neg_group_nodes,
neg_neighs,
neg_gnew_neighs)
if iter_num == num_iter:
print('Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num,
'loss',
'{}, cost:{:.4f}'.format(train_loss, time.time() - epoch_start))
iter_num += 1
if _epoch % config.eval_interval == 0:
save_checkpoint(bgcfnet, config.ckptpath + "/bgcf_epoch{}.ckpt".format(_epoch))
if __name__ == "__main__":
run_train()