mindspore/tests/ut/python/ops/test_array_ops.py

374 lines
12 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test array ops """
import functools
import numpy as np
import pytest
from mindspore._c_expression import signature_dtype as sig_dtype
from mindspore._c_expression import signature_kind as sig_kind
from mindspore._c_expression import signature_rw as sig_rw
import mindspore as ms
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
from mindspore.ops import prim_attr_register
from mindspore.ops.primitive import PrimitiveWithInfer
import mindspore.context as context
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
from ....mindspore_test_framework.pipeline.forward.verify_exception \
import pipeline_for_verify_exception_for_case_by_case_config
def test_expand_dims():
input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
expand_dims = P.ExpandDims()
output = expand_dims(input_tensor, 0)
assert output.asnumpy().shape == (1, 2, 2)
def test_cast():
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_x = Tensor(input_np)
td = ms.int32
cast = P.Cast()
result = cast(input_x, td)
expect = input_np.astype(np.int32)
assert np.all(result.asnumpy() == expect)
@non_graph_engine
def test_reshape():
input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
shp = (3, 2)
reshape = P.Reshape()
output = reshape(input_tensor, shp)
assert output.asnumpy().shape == (3, 2)
def test_transpose():
input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
perm = (0, 2, 1)
expect = np.array([[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]])
transpose = P.Transpose()
output = transpose(input_tensor, perm)
assert np.all(output.asnumpy() == expect)
def test_squeeze():
input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
squeeze = P.Squeeze(2)
output = squeeze(input_tensor)
assert output.asnumpy().shape == (3, 2)
def test_invert_permutation():
invert_permutation = P.InvertPermutation()
x = (3, 4, 0, 2, 1)
output = invert_permutation(x)
expect = (2, 4, 3, 0, 1)
assert np.all(output == expect)
def test_select():
select = P.Select()
cond = Tensor(np.array([[True, False, False], [False, True, True]]))
x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]))
y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]))
output = select(cond, x, y)
expect = np.array([[1, 8, 9], [10, 5, 6]])
assert np.all(output.asnumpy() == expect)
def test_argmin_invalid_output_type():
P.Argmin(-1, mstype.int64)
P.Argmin(-1, mstype.int32)
with pytest.raises(TypeError):
P.Argmin(-1, mstype.float32)
with pytest.raises(TypeError):
P.Argmin(-1, mstype.float64)
with pytest.raises(TypeError):
P.Argmin(-1, mstype.uint8)
with pytest.raises(TypeError):
P.Argmin(-1, mstype.bool_)
class CustomOP(PrimitiveWithInfer):
__mindspore_signature__ = (sig_dtype.T, sig_dtype.T, sig_dtype.T1,
sig_dtype.T1, sig_dtype.T2, sig_dtype.T2,
sig_dtype.T2, sig_dtype.T3, sig_dtype.T4)
@prim_attr_register
def __init__(self):
pass
def __call__(self, p1, p2, p3, p4, p5, p6, p7, p8, p9):
raise NotImplementedError
class CustomOP2(PrimitiveWithInfer):
__mindspore_signature__ = (
('p1', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('p2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('p3', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
)
@prim_attr_register
def __init__(self):
pass
def __call__(self, p1, p2, p3):
raise NotImplementedError
class CustNet1(Cell):
def __init__(self):
super(CustNet1, self).__init__()
self.op = CustomOP()
self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
self.int1 = 3
self.float1 = 5.1
def construct(self):
x = self.op(self.t1, self.t1, self.int1,
self.float1, self.int1, self.float1,
self.t2, self.t1, self.int1)
return x
class CustNet2(Cell):
def __init__(self):
super(CustNet2, self).__init__()
self.op = CustomOP2()
self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
self.int1 = 3
def construct(self):
return self.op(self.t1, self.t2, self.int1)
class CustNet3(Cell):
def __init__(self):
super(CustNet3, self).__init__()
self.op = P.ReduceSum()
self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
self.t2 = 1
def construct(self):
return self.op(self.t1, self.t2)
class MathBinaryNet1(Cell):
def __init__(self):
super(MathBinaryNet1, self).__init__()
self.add = P.TensorAdd()
self.mul = P.Mul()
self.max = P.Maximum()
self.number = 3
def construct(self, x):
return self.add(x, self.number) + self.mul(x, self.number) + self.max(x, self.number)
class MathBinaryNet2(Cell):
def __init__(self):
super(MathBinaryNet2, self).__init__()
self.less_equal = P.LessEqual()
self.greater = P.Greater()
self.logic_or = P.LogicalOr()
self.logic_and = P.LogicalAnd()
self.number = 3
self.flag = True
def construct(self, x):
ret_less_equal = self.logic_and(self.less_equal(x, self.number), self.flag)
ret_greater = self.logic_or(self.greater(x, self.number), self.flag)
return self.logic_or(ret_less_equal, ret_greater)
class BatchToSpaceNet(Cell):
def __init__(self):
super(BatchToSpaceNet, self).__init__()
block_size = 2
crops = [[0, 0], [0, 0]]
self.batch_to_space = P.BatchToSpace(block_size, crops)
def construct(self, x):
return self.batch_to_space(x)
class SpaceToBatchNet(Cell):
def __init__(self):
super(SpaceToBatchNet, self).__init__()
block_size = 2
paddings = [[0, 0], [0, 0]]
self.space_to_batch = P.SpaceToBatch(block_size, paddings)
def construct(self, x):
return self.space_to_batch(x)
class PackNet(Cell):
def __init__(self):
super(PackNet, self).__init__()
self.pack = P.Pack()
def construct(self, x):
return self.pack((x, x))
class UnpackNet(Cell):
def __init__(self):
super(UnpackNet, self).__init__()
self.unpack = P.Unpack()
def construct(self, x):
return self.unpack(x)
class SpaceToDepthNet(Cell):
def __init__(self):
super(SpaceToDepthNet, self).__init__()
block_size = 2
self.space_to_depth = P.SpaceToDepth(block_size)
def construct(self, x):
return self.space_to_depth(x)
class DepthToSpaceNet(Cell):
def __init__(self):
super(DepthToSpaceNet, self).__init__()
block_size = 2
self.depth_to_space = P.DepthToSpace(block_size)
def construct(self, x):
return self.depth_to_space(x)
class BatchToSpaceNDNet(Cell):
def __init__(self):
super(BatchToSpaceNDNet, self).__init__()
block_shape = [2, 2]
crops = [[0, 0], [0, 0]]
self.batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
def construct(self, x):
return self.batch_to_space_nd(x)
class SpaceToBatchNDNet(Cell):
def __init__(self):
super(SpaceToBatchNDNet, self).__init__()
block_shape = [2, 2]
paddings = [[0, 0], [0, 0]]
self.space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
def construct(self, x):
return self.space_to_batch_nd(x)
class RangeNet(Cell):
def __init__(self):
super(RangeNet, self).__init__()
self.range_ops = inner.Range(1.0, 8.0, 2.0)
def construct(self, x):
return self.range_ops(x)
test_case_array_ops = [
('CustNet1', {
'block': CustNet1(),
'desc_inputs': []}),
('CustNet2', {
'block': CustNet2(),
'desc_inputs': []}),
('CustNet3', {
'block': CustNet3(),
'desc_inputs': []}),
('MathBinaryNet1', {
'block': MathBinaryNet1(),
'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
('MathBinaryNet2', {
'block': MathBinaryNet2(),
'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
('BatchToSpaceNet', {
'block': BatchToSpaceNet(),
'desc_inputs': [Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]).astype(np.float16))]}),
('SpaceToBatchNet', {
'block': SpaceToBatchNet(),
'desc_inputs': [Tensor(np.array([[[[1, 2], [3, 4]]]]).astype(np.float16))]}),
('PackNet', {
'block': PackNet(),
'desc_inputs': [Tensor(np.array([[[1, 2], [3, 4]]]).astype(np.float16))]}),
('UnpackNet', {
'block': UnpackNet(),
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4]]).astype(np.float16))]}),
('SpaceToDepthNet', {
'block': SpaceToDepthNet(),
'desc_inputs': [Tensor(np.random.rand(1, 3, 2, 2).astype(np.float16))]}),
('DepthToSpaceNet', {
'block': DepthToSpaceNet(),
'desc_inputs': [Tensor(np.random.rand(1, 12, 1, 1).astype(np.float16))]}),
('SpaceToBatchNDNet', {
'block': SpaceToBatchNDNet(),
'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2).astype(np.float16))]}),
('BatchToSpaceNDNet', {
'block': BatchToSpaceNDNet(),
'desc_inputs': [Tensor(np.random.rand(4, 1, 1, 1).astype(np.float16))]}),
('RangeNet', {
'block': RangeNet(),
'desc_inputs': [Tensor(np.array([1, 2, 3, 2]), ms.int32)]}),
]
test_case_lists = [test_case_array_ops]
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
context.set_context(mode=context.GRAPH_MODE)
return test_exec_case
raise_set = [
('Squeeze_1_Error', {
'block': (lambda x: P.Squeeze(axis=1.2), {'exception': TypeError}),
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
('Squeeze_2_Error', {
'block': (lambda x: P.Squeeze(axis=((1.2, 1.3))), {'exception': TypeError}),
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
('ReduceSum_Error', {
'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': TypeError}),
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
]
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
def test_check_exception():
return raise_set