forked from mindspore-Ecosystem/mindspore
374 lines
12 KiB
Python
374 lines
12 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test array ops """
|
|
import functools
|
|
import numpy as np
|
|
import pytest
|
|
from mindspore._c_expression import signature_dtype as sig_dtype
|
|
from mindspore._c_expression import signature_kind as sig_kind
|
|
from mindspore._c_expression import signature_rw as sig_rw
|
|
|
|
import mindspore as ms
|
|
from mindspore import Tensor
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.nn import Cell
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops.operations import _inner_ops as inner
|
|
from mindspore.ops import prim_attr_register
|
|
from mindspore.ops.primitive import PrimitiveWithInfer
|
|
import mindspore.context as context
|
|
from ..ut_filter import non_graph_engine
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
|
from ....mindspore_test_framework.pipeline.forward.verify_exception \
|
|
import pipeline_for_verify_exception_for_case_by_case_config
|
|
|
|
|
|
def test_expand_dims():
|
|
input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
|
|
expand_dims = P.ExpandDims()
|
|
output = expand_dims(input_tensor, 0)
|
|
assert output.asnumpy().shape == (1, 2, 2)
|
|
|
|
|
|
def test_cast():
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_x = Tensor(input_np)
|
|
td = ms.int32
|
|
cast = P.Cast()
|
|
result = cast(input_x, td)
|
|
expect = input_np.astype(np.int32)
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_reshape():
|
|
input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
|
|
shp = (3, 2)
|
|
reshape = P.Reshape()
|
|
output = reshape(input_tensor, shp)
|
|
assert output.asnumpy().shape == (3, 2)
|
|
|
|
|
|
def test_transpose():
|
|
input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
|
|
perm = (0, 2, 1)
|
|
expect = np.array([[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]])
|
|
|
|
transpose = P.Transpose()
|
|
output = transpose(input_tensor, perm)
|
|
assert np.all(output.asnumpy() == expect)
|
|
|
|
|
|
def test_squeeze():
|
|
input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
|
|
squeeze = P.Squeeze(2)
|
|
output = squeeze(input_tensor)
|
|
assert output.asnumpy().shape == (3, 2)
|
|
|
|
|
|
def test_invert_permutation():
|
|
invert_permutation = P.InvertPermutation()
|
|
x = (3, 4, 0, 2, 1)
|
|
output = invert_permutation(x)
|
|
expect = (2, 4, 3, 0, 1)
|
|
assert np.all(output == expect)
|
|
|
|
|
|
def test_select():
|
|
select = P.Select()
|
|
cond = Tensor(np.array([[True, False, False], [False, True, True]]))
|
|
x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]))
|
|
y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]))
|
|
output = select(cond, x, y)
|
|
expect = np.array([[1, 8, 9], [10, 5, 6]])
|
|
assert np.all(output.asnumpy() == expect)
|
|
|
|
|
|
def test_argmin_invalid_output_type():
|
|
P.Argmin(-1, mstype.int64)
|
|
P.Argmin(-1, mstype.int32)
|
|
with pytest.raises(TypeError):
|
|
P.Argmin(-1, mstype.float32)
|
|
with pytest.raises(TypeError):
|
|
P.Argmin(-1, mstype.float64)
|
|
with pytest.raises(TypeError):
|
|
P.Argmin(-1, mstype.uint8)
|
|
with pytest.raises(TypeError):
|
|
P.Argmin(-1, mstype.bool_)
|
|
|
|
|
|
class CustomOP(PrimitiveWithInfer):
|
|
__mindspore_signature__ = (sig_dtype.T, sig_dtype.T, sig_dtype.T1,
|
|
sig_dtype.T1, sig_dtype.T2, sig_dtype.T2,
|
|
sig_dtype.T2, sig_dtype.T3, sig_dtype.T4)
|
|
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(self, p1, p2, p3, p4, p5, p6, p7, p8, p9):
|
|
raise NotImplementedError
|
|
|
|
|
|
class CustomOP2(PrimitiveWithInfer):
|
|
__mindspore_signature__ = (
|
|
('p1', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
|
|
('p2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
|
|
('p3', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
|
|
)
|
|
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(self, p1, p2, p3):
|
|
raise NotImplementedError
|
|
|
|
|
|
class CustNet1(Cell):
|
|
def __init__(self):
|
|
super(CustNet1, self).__init__()
|
|
self.op = CustomOP()
|
|
self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
|
|
self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
|
|
self.int1 = 3
|
|
self.float1 = 5.1
|
|
|
|
def construct(self):
|
|
x = self.op(self.t1, self.t1, self.int1,
|
|
self.float1, self.int1, self.float1,
|
|
self.t2, self.t1, self.int1)
|
|
return x
|
|
|
|
|
|
class CustNet2(Cell):
|
|
def __init__(self):
|
|
super(CustNet2, self).__init__()
|
|
self.op = CustomOP2()
|
|
self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
|
|
self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
|
|
self.int1 = 3
|
|
|
|
def construct(self):
|
|
return self.op(self.t1, self.t2, self.int1)
|
|
|
|
|
|
class CustNet3(Cell):
|
|
def __init__(self):
|
|
super(CustNet3, self).__init__()
|
|
self.op = P.ReduceSum()
|
|
self.t1 = Tensor(np.ones([2, 2]), dtype=ms.int32)
|
|
self.t2 = Tensor(np.ones([1, 5]), dtype=ms.float16)
|
|
self.t2 = 1
|
|
|
|
def construct(self):
|
|
return self.op(self.t1, self.t2)
|
|
|
|
|
|
class MathBinaryNet1(Cell):
|
|
def __init__(self):
|
|
super(MathBinaryNet1, self).__init__()
|
|
self.add = P.TensorAdd()
|
|
self.mul = P.Mul()
|
|
self.max = P.Maximum()
|
|
self.number = 3
|
|
|
|
def construct(self, x):
|
|
return self.add(x, self.number) + self.mul(x, self.number) + self.max(x, self.number)
|
|
|
|
|
|
class MathBinaryNet2(Cell):
|
|
def __init__(self):
|
|
super(MathBinaryNet2, self).__init__()
|
|
self.less_equal = P.LessEqual()
|
|
self.greater = P.Greater()
|
|
self.logic_or = P.LogicalOr()
|
|
self.logic_and = P.LogicalAnd()
|
|
self.number = 3
|
|
self.flag = True
|
|
|
|
def construct(self, x):
|
|
ret_less_equal = self.logic_and(self.less_equal(x, self.number), self.flag)
|
|
ret_greater = self.logic_or(self.greater(x, self.number), self.flag)
|
|
return self.logic_or(ret_less_equal, ret_greater)
|
|
|
|
|
|
class BatchToSpaceNet(Cell):
|
|
def __init__(self):
|
|
super(BatchToSpaceNet, self).__init__()
|
|
block_size = 2
|
|
crops = [[0, 0], [0, 0]]
|
|
self.batch_to_space = P.BatchToSpace(block_size, crops)
|
|
|
|
def construct(self, x):
|
|
return self.batch_to_space(x)
|
|
|
|
|
|
class SpaceToBatchNet(Cell):
|
|
def __init__(self):
|
|
super(SpaceToBatchNet, self).__init__()
|
|
block_size = 2
|
|
paddings = [[0, 0], [0, 0]]
|
|
self.space_to_batch = P.SpaceToBatch(block_size, paddings)
|
|
|
|
def construct(self, x):
|
|
return self.space_to_batch(x)
|
|
|
|
|
|
class PackNet(Cell):
|
|
def __init__(self):
|
|
super(PackNet, self).__init__()
|
|
self.pack = P.Pack()
|
|
|
|
def construct(self, x):
|
|
return self.pack((x, x))
|
|
|
|
|
|
class UnpackNet(Cell):
|
|
def __init__(self):
|
|
super(UnpackNet, self).__init__()
|
|
self.unpack = P.Unpack()
|
|
|
|
def construct(self, x):
|
|
return self.unpack(x)
|
|
class SpaceToDepthNet(Cell):
|
|
def __init__(self):
|
|
super(SpaceToDepthNet, self).__init__()
|
|
block_size = 2
|
|
self.space_to_depth = P.SpaceToDepth(block_size)
|
|
|
|
def construct(self, x):
|
|
return self.space_to_depth(x)
|
|
|
|
|
|
class DepthToSpaceNet(Cell):
|
|
def __init__(self):
|
|
super(DepthToSpaceNet, self).__init__()
|
|
block_size = 2
|
|
self.depth_to_space = P.DepthToSpace(block_size)
|
|
|
|
def construct(self, x):
|
|
return self.depth_to_space(x)
|
|
|
|
|
|
class BatchToSpaceNDNet(Cell):
|
|
def __init__(self):
|
|
super(BatchToSpaceNDNet, self).__init__()
|
|
block_shape = [2, 2]
|
|
crops = [[0, 0], [0, 0]]
|
|
self.batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
|
|
|
|
def construct(self, x):
|
|
return self.batch_to_space_nd(x)
|
|
|
|
|
|
class SpaceToBatchNDNet(Cell):
|
|
def __init__(self):
|
|
super(SpaceToBatchNDNet, self).__init__()
|
|
block_shape = [2, 2]
|
|
paddings = [[0, 0], [0, 0]]
|
|
self.space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
|
|
|
|
def construct(self, x):
|
|
return self.space_to_batch_nd(x)
|
|
|
|
|
|
class RangeNet(Cell):
|
|
def __init__(self):
|
|
super(RangeNet, self).__init__()
|
|
self.range_ops = inner.Range(1.0, 8.0, 2.0)
|
|
|
|
def construct(self, x):
|
|
return self.range_ops(x)
|
|
|
|
|
|
test_case_array_ops = [
|
|
('CustNet1', {
|
|
'block': CustNet1(),
|
|
'desc_inputs': []}),
|
|
('CustNet2', {
|
|
'block': CustNet2(),
|
|
'desc_inputs': []}),
|
|
('CustNet3', {
|
|
'block': CustNet3(),
|
|
'desc_inputs': []}),
|
|
('MathBinaryNet1', {
|
|
'block': MathBinaryNet1(),
|
|
'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
|
|
('MathBinaryNet2', {
|
|
'block': MathBinaryNet2(),
|
|
'desc_inputs': [Tensor(np.ones([2, 2]), dtype=ms.int32)]}),
|
|
('BatchToSpaceNet', {
|
|
'block': BatchToSpaceNet(),
|
|
'desc_inputs': [Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]).astype(np.float16))]}),
|
|
('SpaceToBatchNet', {
|
|
'block': SpaceToBatchNet(),
|
|
'desc_inputs': [Tensor(np.array([[[[1, 2], [3, 4]]]]).astype(np.float16))]}),
|
|
('PackNet', {
|
|
'block': PackNet(),
|
|
'desc_inputs': [Tensor(np.array([[[1, 2], [3, 4]]]).astype(np.float16))]}),
|
|
('UnpackNet', {
|
|
'block': UnpackNet(),
|
|
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4]]).astype(np.float16))]}),
|
|
('SpaceToDepthNet', {
|
|
'block': SpaceToDepthNet(),
|
|
'desc_inputs': [Tensor(np.random.rand(1, 3, 2, 2).astype(np.float16))]}),
|
|
('DepthToSpaceNet', {
|
|
'block': DepthToSpaceNet(),
|
|
'desc_inputs': [Tensor(np.random.rand(1, 12, 1, 1).astype(np.float16))]}),
|
|
('SpaceToBatchNDNet', {
|
|
'block': SpaceToBatchNDNet(),
|
|
'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2).astype(np.float16))]}),
|
|
('BatchToSpaceNDNet', {
|
|
'block': BatchToSpaceNDNet(),
|
|
'desc_inputs': [Tensor(np.random.rand(4, 1, 1, 1).astype(np.float16))]}),
|
|
('RangeNet', {
|
|
'block': RangeNet(),
|
|
'desc_inputs': [Tensor(np.array([1, 2, 3, 2]), ms.int32)]}),
|
|
]
|
|
|
|
test_case_lists = [test_case_array_ops]
|
|
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|
# use -k to select certain testcast
|
|
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
|
|
|
|
|
|
|
@non_graph_engine
|
|
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
|
def test_exec():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
return test_exec_case
|
|
|
|
|
|
raise_set = [
|
|
('Squeeze_1_Error', {
|
|
'block': (lambda x: P.Squeeze(axis=1.2), {'exception': TypeError}),
|
|
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
|
|
('Squeeze_2_Error', {
|
|
'block': (lambda x: P.Squeeze(axis=((1.2, 1.3))), {'exception': TypeError}),
|
|
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
|
|
('ReduceSum_Error', {
|
|
'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': TypeError}),
|
|
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
|
|
]
|
|
|
|
|
|
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
|
|
def test_check_exception():
|
|
return raise_set
|