mindspore/tests/perf_test/resnet_example.py

166 lines
4.8 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Resnet examples."""
# pylint: disable=missing-docstring, arguments-differ
import mindspore.nn as nn
from mindspore.ops import operations as P
def conv3x3(in_channels, out_channels, stride=1, padding=1, pad_mode='pad'):
"""3x3 convolution """
return nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, padding=padding, pad_mode=pad_mode)
def conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='pad'):
"""1x1 convolution"""
return nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode)
class ResidualBlock(nn.Cell):
"""
residual Block
"""
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1,
down_sample=False):
super(ResidualBlock, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(out_chls)
self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
self.bn2 = nn.BatchNorm2d(out_chls)
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
self.downsample = down_sample
self.conv_down_sample = conv1x1(in_channels, out_channels,
stride=stride, padding=0)
self.bn_down_sample = nn.BatchNorm2d(out_channels)
self.add = P.TensorAdd()
def construct(self, x):
"""
:param x:
:return:
"""
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample:
identity = self.conv_down_sample(identity)
identity = self.bn_down_sample(identity)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResNet50(nn.Cell):
"""
resnet nn.Cell
"""
def __init__(self, block, num_classes=100):
super(ResNet50, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='valid')
self.layer1 = self.MakeLayer(
block, 3, in_channels=64, out_channels=256, stride=1)
self.layer2 = self.MakeLayer(
block, 4, in_channels=256, out_channels=512, stride=2)
self.layer3 = self.MakeLayer(
block, 6, in_channels=512, out_channels=1024, stride=2)
self.layer4 = self.MakeLayer(
block, 3, in_channels=1024, out_channels=2048, stride=2)
self.avgpool = nn.AvgPool2d(7, 1)
self.flatten = P.Flatten()
self.fc = nn.Dense(512 * block.expansion, num_classes)
def MakeLayer(self, block, layer_num, in_channels, out_channels, stride):
"""
make block layer
:param block:
:param layer_num:
:param in_channels:
:param out_channels:
:param stride:
:return:
"""
layers = []
resblk = block(in_channels, out_channels,
stride=stride, down_sample=True)
layers.append(resblk)
for _ in range(1, layer_num):
resblk = block(out_channels, out_channels, stride=1)
layers.append(resblk)
return nn.SequentialCell(layers)
def construct(self, x):
"""
:param x:
:return:
"""
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
def resnet50():
return ResNet50(ResidualBlock, 10)