mindspore/model_zoo/official/lite/image_classification
hukang hwx963878 350884b2cc update mindspore to 1.2.0 2021-04-15 17:14:07 +08:00
..
app update mindspore to 1.2.0 2021-04-15 17:14:07 +08:00
gradle/wrapper !3 update opencv,mslite into network 2020-08-29 18:31:11 +08:00
images new demo version 2021-01-12 16:33:49 +08:00
.gitignore Using the mindspore1.0 Library and add lite test model 2020-09-17 17:09:41 +08:00
README.en.md update mindspore lite 1.1.0 to 1.1.1 2021-03-17 16:00:40 +08:00
README.md update mindspore lite 1.1.0 to 1.1.1 2021-03-17 16:00:40 +08:00
build.gradle !3 update opencv,mslite into network 2020-08-29 18:31:11 +08:00
gradle.properties 添加骨骼和风格迁移代码格式化 2020-11-25 14:20:24 +08:00
gradlew !3 update opencv,mslite into network 2020-08-29 18:31:11 +08:00
gradlew.bat !3 update opencv,mslite into network 2020-08-29 18:31:11 +08:00
settings.gradle Adaptation version 1.0.1 And Add HiMindspore Demo 2020-10-30 08:47:00 +08:00

README.en.md

Demo of Image Classification

The following describes how to use the MindSpore Lite C++ APIs (Android JNIs) and MindSpore Lite image classification models to perform on-device inference, classify the content captured by a device camera, and display the most possible classification result on the application's image preview screen.

Running Dependencies

  • Android Studio 3.2 or later (Android 4.0 or later is recommended.)

Building and Running

  1. Load the sample source code to Android Studio.

    start_home

    Start Android Studio, click File > Settings > System Settings > Android SDK, and select the corresponding SDK Tools. As shown in the following figure, select an SDK and click OK. Android Studio automatically installs the SDK.

    start_sdk

    Android SDK Tools is the default installation. You can see this by unchecking the Hide Obsolete Packagesbox.

    If you have any Android Studio configuration problem when trying this demo, please refer to item 4 to resolve it.

  2. Connect to an Android device and runs this application.

    Connect to the Android device through a USB cable for debugging. Click Run 'app' to run the sample project on your device.

    run_app

    Android Studio will automatically download MindSpore Lite, model files and other dependencies during the compilation process. Please be patient during this process.

    For details about how to connect the Android Studio to a device for debugging, see https://developer.android.com/studio/run/device?hl=zh-cn.

    The mobile phone needs to be turn on "USB debugging mode" before Android Studio can recognize the mobile phone. Huawei mobile phones generally turn on "USB debugging model" in Settings -> system and update -> developer Options -> USB debugging.

  3. Continue the installation on the Android device. After the installation is complete, you can view the content captured by a camera and the inference result.

    result

  4. The solutions of configuration problems:

    4.1 Problems of NDK, CMake, JDK Tools:

    If the tools installed in Android Studio are not recognized, you can re-download and install them from the corresponding official website, and configure the path.

    • NDK >= 21.3 NDK
    • CMake >= 3.10.2 CMake
    • Android SDK >= 26 SDK
    • JDK >= 1.8 JDK

    project_structure

    4.2 NDK version does not match:

    Open Android SDK, click Show Package Details, and select the appropriate NDK version according to the error message. NDK_version

    4.3 Problem of Android Studio version:

    Update the Android Studio version in Toolbar - Help - Checkout for Updates.

    4.4 Gradle dependencies installed too slowly:

    As shown in the picture, open the Demo root directory build. Gradle file, then add huawei mirror source address: maven {url 'https://developer.huawei.com/repo/'}, modify the classpath to 4.0.0 and click sync . Once the download is complete, restore the classpath version and synchronize it again.

Detailed Description of the Sample Program

This image classification sample program on the Android device includes a Java layer and a JNI layer. At the Java layer, the Android Camera 2 API is used to enable a camera to obtain image frames and process images. At the JNI layer, the model inference process is completed in Runtime.

Sample Program Structure

app
│
├── src/main
│   ├── assets # resource files
|   |   └── mobilenetv2.ms # model file
│   |
│   ├── cpp # main logic encapsulation classes for model loading and prediction
|   |   |
|   |   ├── mindspore_lite_x.x.x-runtime-arm64-cpu #MindSpore Lite Version
|   |   ├── MindSporeNetnative.cpp # JNI methods related to MindSpore calling
│   |   └── MindSporeNetnative.h # header file
│   |
│   ├── java # application code at the Java layer
│   │   └── com.mindspore.classification
│   │       ├── gallery.classify # implementation related to image processing and MindSpore JNI calling
│   │       │   └── ...
│   │       └── widget # implementation related to camera enabling and drawing
│   │           └── ...
│   │
│   ├── res # resource files related to Android
│   └── AndroidManifest.xml # Android configuration file
│
├── CMakeList.txt # CMake compilation entry file
│
├── build.gradle # Other Android configuration file
├── download.gradle # MindSpore version download
└── ...

Configuring MindSpore Lite Dependencies

When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite source code compilation to generate the MindSpore Lite version. In this case, you need to use the compile command of generate with image preprocessing module.

In this example, the build process automatically downloads the mindspore-lite-1.0.1-runtime-arm64-cpu by the app/download.gradle file and saves in the app/src/main/cpp directory.

Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location.

mindspore-lite-1.1.1-runtime-arm64-cpu.tar.gz Download link

android{
    defaultConfig{
        externalNativeBuild{
            cmake{
                arguments "-DANDROID_STL=c++_shared"
                cppFlags "-std=c++17 -fexceptions -frtti"
            }
        }

        ndk{
            abiFilters'armeabi-v7a', 'arm64-v8a'  
        }
    }
}

Create a link to the .so library file in the app/CMakeLists.txt file:

# ============== Set MindSpore Dependencies. =============
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include)

add_library(mindspore-lite SHARED IMPORTED)
add_library(minddata-lite SHARED IMPORTED)

set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
        ${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
        ${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/minddata/lib/libminddata-lite.so)
# --------------- MindSpore Lite set End. --------------------

# Link target library.
target_link_libraries(
    ...
     # --- mindspore ---
        minddata-lite
        mindspore-lite
    ...
)

Downloading and Deploying a Model File

In this example, the download.gradle File configuration auto download mobilenetv2.msand placed in the 'app/libs/arm64-v8a' directory.

Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location.

mobilenetv2.ms mobilenetv2.ms

Compiling On-Device Inference Code

Call MindSpore Lite C++ APIs at the JNI layer to implement on-device inference.

The inference code process is as follows. For details about the complete code, see src/cpp/MindSporeNetnative.cpp.

  1. Load the MindSpore Lite model file and build the context, session, and computational graph for inference.

    • Load a model file. Create and configure the context for model inference.
    // Buffer is the model data passed in by the Java layer
    jlong bufferLen = env->GetDirectBufferCapacity(buffer);
    char *modelBuffer = CreateLocalModelBuffer(env, buffer);  
    
    • Create a session.
    void **labelEnv = new void *;
    MSNetWork *labelNet = new MSNetWork;
    *labelEnv = labelNet;
    
    // Create context.
    mindspore::lite::Context *context = new mindspore::lite::Context;
    context->thread_num_ = num_thread;
    
    // Create the mindspore session.
    labelNet->CreateSessionMS(modelBuffer, bufferLen, "device label", context);
    delete(context);
    
    
    • Load the model file and build a computational graph for inference.
    void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, std::string name, mindspore::lite::Context* ctx)
    {
        CreateSession(modelBuffer, bufferLen, ctx);  
        session = mindspore::session::LiteSession::CreateSession(ctx);
        auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
        int ret = session->CompileGraph(model);
    }
    
  2. Convert the input image into the Tensor format of the MindSpore model.

    Convert the image data to be detected into the Tensor format of the MindSpore model.

    if (!BitmapToLiteMat(env, srcBitmap, &lite_mat_bgr)) {
    MS_PRINT("BitmapToLiteMat error");
    return NULL;
    }
    if (!PreProcessImageData(lite_mat_bgr, &lite_norm_mat_cut)) {
    MS_PRINT("PreProcessImageData error");
    return NULL;
    }
    
    ImgDims inputDims;
    inputDims.channel = lite_norm_mat_cut.channel_;
    inputDims.width = lite_norm_mat_cut.width_;
    inputDims.height = lite_norm_mat_cut.height_;
    
    // Get the mindsore inference environment which created in loadModel().
    void **labelEnv = reinterpret_cast<void **>(netEnv);
    if (labelEnv == nullptr) {
    MS_PRINT("MindSpore error, labelEnv is a nullptr.");
    return NULL;
    }
    MSNetWork *labelNet = static_cast<MSNetWork *>(*labelEnv);
    
    auto mSession = labelNet->session();
    if (mSession == nullptr) {
    MS_PRINT("MindSpore error, Session is a nullptr.");
    return NULL;
    }
    MS_PRINT("MindSpore get session.");
    
    auto msInputs = mSession->GetInputs();
    if (msInputs.size() == 0) {
    MS_PRINT("MindSpore error, msInputs.size() equals 0.");
    return NULL;
    }
    auto inTensor = msInputs.front();
    
    float *dataHWC = reinterpret_cast<float *>(lite_norm_mat_cut.data_ptr_);
    // Copy dataHWC to the model input tensor.
    memcpy(inTensor->MutableData(), dataHWC,
        inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
    
  3. Perform inference on the input tensor based on the model, obtain the output tensor, and perform post-processing.

    • Perform graph execution and on-device inference.
    // After the model and image tensor data is loaded, run inference.
    auto status = mSession->RunGraph();
    
    • Obtain the output data.

      auto names = mSession->GetOutputTensorNames();
      std::unordered_map<std::string,mindspore::tensor::MSTensor *> msOutputs;
      for (const auto &name : names) {
          auto temp_dat =mSession->GetOutputByTensorName(name);
          msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *> {name, temp_dat});
        }
      std::string retStr = ProcessRunnetResult(msOutputs, ret);
      
    • Perform post-processing of the output data.

      std::string ProcessRunnetResult(const int RET_CATEGORY_SUM, const char *const labels_name_map[],
               std::unordered_map<std::string, mindspore::tensor::MSTensor *> msOutputs) {
       // Get the branch of the model output.
       // Use iterators to get map elements.
       std::unordered_map<std::string, mindspore::tensor::MSTensor *>::iterator iter;
       iter = msOutputs.begin();
      
       // The mobilenetv2.ms model output just one branch.
       auto outputTensor = iter->second;
      
       int tensorNum = outputTensor->ElementsNum();
       MS_PRINT("Number of tensor elements:%d", tensorNum);
      
       // Get a pointer to the first score.
       float *temp_scores = static_cast<float *>(outputTensor->MutableData());
       float scores[RET_CATEGORY_SUM];
       for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
        scores[i] = temp_scores[i];
       }
      
       float unifiedThre = 0.5;
       float probMax = 1.0;
       for (size_t i = 0; i < RET_CATEGORY_SUM; ++i) {
        float threshold = g_thres_map[i];
        float tmpProb = scores[i];
        if (tmpProb < threshold) {
         tmpProb = tmpProb / threshold * unifiedThre;
        } else {
         tmpProb = (tmpProb - threshold) / (probMax - threshold) * unifiedThre + unifiedThre;
       }
        scores[i] = tmpProb;
      }
      
       for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
       if (scores[i] > 0.5) {
           MS_PRINT("MindSpore scores[%d] : [%f]", i, scores[i]);
        }
       }
      
       // Score for each category.
       // Converted to text information that needs to be displayed in the APP.
       std::string categoryScore = "";
       for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
        categoryScore += labels_name_map[i];
        categoryScore += ":";
        std::string score_str = std::to_string(scores[i]);
        categoryScore += score_str;
        categoryScore += ";";
       }
         return categoryScore;
      }