mindspore/model_zoo/official/cv/googlenet/src/dataset.py

143 lines
5.2 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Data operations, will be used in train.py and eval.py
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as vision
def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=None):
"""Data operations."""
data_dir = os.path.join(data_home, "cifar-10-batches-bin")
if not training:
data_dir = os.path.join(data_home, "cifar-10-verify-bin")
if training:
rank_size, rank_id = _get_rank_info()
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, shuffle=True)
else:
data_set = ds.Cifar10Dataset(data_dir, shuffle=False)
resize_height = cifar_cfg.image_height
resize_width = cifar_cfg.image_width
# define map operations
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip()
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
rescale_op = vision.Rescale(1.0 / 255.0, 0.0)
normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
changeswap_op = vision.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
c_trans = []
if training:
c_trans = [random_crop_op, random_horizontal_op]
c_trans += [resize_op, rescale_op, normalize_op, changeswap_op]
# apply map operations on images
data_set = data_set.map(operations=type_cast_op, input_columns="label")
data_set = data_set.map(operations=c_trans, input_columns="image")
# apply batch operations
data_set = data_set.batch(batch_size=cifar_cfg.batch_size, drop_remainder=True)
# apply repeat operations
data_set = data_set.repeat(repeat_num)
return data_set
def create_dataset_imagenet(dataset_path, repeat_num=1, training=True,
num_parallel_workers=None, shuffle=None, imagenet_cfg=None):
"""
create a train or eval imagenet2012 dataset for resnet50
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
target(str): the device target. Default: Ascend
Returns:
dataset
"""
if training:
device_num, rank_id = _get_rank_info()
if device_num == 1:
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallel_workers, shuffle=shuffle)
else:
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallel_workers, shuffle=shuffle,
num_shards=device_num, shard_id=rank_id)
else:
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallel_workers, shuffle=shuffle)
assert imagenet_cfg.image_height == imagenet_cfg.image_width, "image_height not equal image_width"
image_size = imagenet_cfg.image_height
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
# define map operations
if training:
transform_img = [
vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
vision.RandomHorizontalFlip(prob=0.5),
vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.1),
vision.Normalize(mean=mean, std=std),
vision.HWC2CHW()
]
else:
transform_img = [
vision.Decode(),
vision.Resize(256),
vision.CenterCrop(image_size),
vision.Normalize(mean=mean, std=std),
vision.HWC2CHW()
]
transform_label = [C.TypeCast(mstype.int32)]
data_set = data_set.map(input_columns="image", num_parallel_workers=12, operations=transform_img)
data_set = data_set.map(input_columns="label", num_parallel_workers=4, operations=transform_label)
# apply batch operations
data_set = data_set.batch(imagenet_cfg.batch_size, drop_remainder=True)
# apply dataset repeat operation
data_set = data_set.repeat(repeat_num)
return data_set
def _get_rank_info():
"""
get rank size and rank id
"""
rank_size = int(os.environ.get("RANK_SIZE", 1))
if rank_size > 1:
from mindspore.communication.management import get_rank, get_group_size
rank_size = get_group_size()
rank_id = get_rank()
else:
rank_size = rank_id = None
return rank_size, rank_id