mindspore/model_zoo/official/cv/googlenet/postprocess.py

100 lines
3.6 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''post process for 310 inference'''
import os
import argparse
import numpy as np
parser = argparse.ArgumentParser(description='postprocess for googlenet')
parser.add_argument("--dataset", type=str, default="imagenet", help="result file path")
parser.add_argument("--result_path", type=str, required=True, help="result file path")
parser.add_argument("--label_file", type=str, required=True, help="label file")
args = parser.parse_args()
def get_top5_acc(top5_arg, gt_class):
sub_count = 0
for top5, gt in zip(top5_arg, gt_class):
if gt in top5:
sub_count += 1
return sub_count
def read_label(label_file):
f = open(label_file, "r")
lines = f.readlines()
img_label = {}
for line in lines:
img_id = line.split(":")[0]
label = line.split(":")[1]
img_label[img_id] = label
return img_label
def cal_acc_cifar10(result_path, label_path):
img_tot = 0
top1_correct = 0
result_shape = (1, 10)
files = os.listdir(result_path)
for file in files:
full_file_path = os.path.join(result_path, file)
if os.path.isfile(full_file_path):
result = np.fromfile(full_file_path, dtype=np.float32).reshape(result_shape)
label_file = os.path.join(label_path, file.split(".bin")[0][:-2] + ".bin")
gt_classes = np.fromfile(label_file, dtype=np.int32)
top1_output = np.argmax(result, (-1))
t1_correct = np.equal(top1_output, gt_classes).sum()
top1_correct += t1_correct
img_tot += 1
acc1 = 100.0 * top1_correct / img_tot
print('after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'.format(top1_correct, img_tot, acc1))
def cal_acc_imagenet(result_path, label_file):
img_label = read_label(label_file)
img_tot = 0
top1_correct = 0
top5_correct = 0
files = os.listdir(result_path)
for file in files:
full_file_path = os.path.join(result_path, file)
if os.path.isfile(full_file_path):
result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000)
gt_classes = int(img_label[file[:-6]])
top1_output = np.argmax(result, (-1))
top5_output = np.argsort(result)[:, -5:]
t1_correct = np.equal(top1_output, gt_classes).sum()
top1_correct += t1_correct
top5_correct += get_top5_acc(top5_output, [gt_classes])
img_tot += 1
acc1 = 100.0 * top1_correct / img_tot
acc5 = 100.0 * top5_correct / img_tot
print('after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'.format(top1_correct, img_tot, acc1))
print('after allreduce eval: top5_correct={}, tot={}, acc={:.2f}%'.format(top5_correct, img_tot, acc5))
if __name__ == "__main__":
if args.dataset.lower() == "cifar10":
cal_acc_cifar10(args.result_path, args.label_file)
else:
cal_acc_imagenet(args.result_path, args.label_file)