mindspore/model_zoo/official/cv/googlenet/eval.py

131 lines
5.1 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############test googlenet example on cifar10#################
python eval.py
"""
import os
import time
import mindspore.nn as nn
from mindspore import context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
from src.googlenet import GoogleNet
from src.CrossEntropySmooth import CrossEntropySmooth
from model_utils.config import config
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id, get_device_num
set_seed(1)
def modelarts_pre_process():
'''modelarts pre process function.'''
def unzip(zip_file, save_dir):
import zipfile
s_time = time.time()
if not os.path.exists(os.path.join(save_dir, config.modelarts_dataset_unzip_name)):
zip_isexist = zipfile.is_zipfile(zip_file)
if zip_isexist:
fz = zipfile.ZipFile(zip_file, 'r')
data_num = len(fz.namelist())
print("Extract Start...")
print("unzip file num: {}".format(data_num))
data_print = int(data_num / 100) if data_num > 100 else 1
i = 0
for file in fz.namelist():
if i % data_print == 0:
print("unzip percent: {}%".format(int(i * 100 / data_num)), flush=True)
i += 1
fz.extract(file, save_dir)
print("cost time: {}min:{}s.".format(int((time.time() - s_time) / 60),
int(int(time.time() - s_time) % 60)))
print("Extract Done.")
else:
print("This is not zip.")
else:
print("Zip has been extracted.")
if config.need_modelarts_dataset_unzip:
zip_file_1 = os.path.join(config.data_path, config.modelarts_dataset_unzip_name + ".zip")
save_dir_1 = os.path.join(config.data_path)
sync_lock = "/tmp/unzip_sync.lock"
# Each server contains 8 devices as most.
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
print("Zip file path: ", zip_file_1)
print("Unzip file save dir: ", save_dir_1)
unzip(zip_file_1, save_dir_1)
print("===Finish extract data synchronization===")
try:
os.mknod(sync_lock)
except IOError:
pass
while True:
if os.path.exists(sync_lock):
break
time.sleep(1)
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_eval():
if config.dataset_name == 'cifar10':
dataset = create_dataset_cifar10(config.val_data_path, 1, False, cifar_cfg=config)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net = GoogleNet(num_classes=config.num_classes)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, config.momentum,
weight_decay=config.weight_decay)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
elif config.dataset_name == "imagenet":
dataset = create_dataset_imagenet(config.val_data_path, 1, False, imagenet_cfg=config)
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=config.label_smooth_factor, num_classes=config.num_classes)
net = GoogleNet(num_classes=config.num_classes)
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
else:
raise ValueError("dataset is not support.")
device_target = config.device_target
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if device_target == "Ascend":
context.set_context(device_id=get_device_id())
param_dict = load_checkpoint(config.checkpoint_path)
print("load checkpoint from [{}].".format(config.checkpoint_path))
load_param_into_net(net, param_dict)
net.set_train(False)
acc = model.eval(dataset)
print("accuracy: ", acc)
if __name__ == '__main__':
run_eval()