mindspore/model_zoo/research/cv/renas/eval.py

96 lines
4.1 KiB
Python
Executable File

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Inference Interface"""
import sys
import argparse
import logging
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy
from mindspore import context
from src.dataset import create_dataset_cifar10
from src.loss import LabelSmoothingCrossEntropy
from src.nasnet import nasbenchnet
from easydict import EasyDict as edict
root = logging.getLogger()
root.setLevel(logging.DEBUG)
parser = argparse.ArgumentParser(description='Evaluation')
parser.add_argument('--data_path', type=str, default='/home/workspace/mindspore_dataset/',
metavar='DIR', help='path to dataset')
parser.add_argument('--model', default='hournas_f_c10', type=str, metavar='MODEL',
help='Name of model to train (default: "hournas_f_c10")')
parser.add_argument('--num-classes', type=int, default=10, metavar='N',
help='number of label classes (default: 10)')
parser.add_argument('--smoothing', type=float, default=0.1,
help='label smoothing (default: 0.1)')
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--ckpt', type=str, default='./nasmodel.ckpt',
help='model checkpoint to load')
parser.add_argument('--GPU', action='store_true', default=False,
help='Use GPU for training (default: False)')
parser.add_argument('--dataset_sink', action='store_true', default=False,
help='Data sink (default: False)')
parser.add_argument('--device_id', type=int, default=0,
help='Device ID (default: 0)')
parser.add_argument('--image-size', type=int, default=32, metavar='N',
help='input image size (default: 32)')
def main():
"""Main entrance for training"""
args = parser.parse_args()
print(sys.argv)
#context.set_context(mode=context.GRAPH_MODE)
context.set_context(mode=context.PYNATIVE_MODE)
if args.GPU:
context.set_context(device_target='GPU', device_id=args.device_id)
# parse model argument
assert args.model.startswith(
"hournas"), "Only Tinynet models are supported."
net = nasbenchnet()
cfg = edict({
'image_height': args.image_size,
'image_width': args.image_size,
})
cfg.batch_size = args.batch_size
val_data_url = args.data_path
val_dataset = create_dataset_cifar10(val_data_url, repeat_num=1, training=False, cifar_cfg=cfg)
loss = LabelSmoothingCrossEntropy(smooth_factor=args.smoothing,
num_classes=args.num_classes)
loss.add_flags_recursive(fp32=True, fp16=False)
eval_metrics = {'Validation-Loss': Loss(),
'Top1-Acc': Top1CategoricalAccuracy(),
'Top5-Acc': Top5CategoricalAccuracy()}
ckpt = load_checkpoint(args.ckpt)
load_param_into_net(net, ckpt)
net.set_train(False)
model = Model(net, loss, metrics=eval_metrics)
metrics = model.eval(val_dataset, dataset_sink_mode=False)
print(metrics)
if __name__ == '__main__':
main()