mindspore/model_zoo/research/cv/autoaugment/test.py

78 lines
2.3 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Model testing entrypoint.
"""
import os
from mindspore import context
from mindspore.common import set_seed
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.config import Config
from src.dataset import create_cifar10_dataset
from src.network import WRN
from src.utils import init_utils
if __name__ == '__main__':
conf = Config(training=False)
init_utils(conf)
set_seed(conf.seed)
# Initialize context
try:
device_id = int(os.getenv('DEVICE_ID'))
except TypeError:
device_id = 0
context.set_context(
mode=context.GRAPH_MODE,
device_target=conf.device_target,
save_graphs=False,
device_id=device_id,
)
# Create dataset
if conf.dataset == 'cifar10':
dataset = create_cifar10_dataset(
dataset_path=conf.dataset_path,
do_train=False,
repeat_num=1,
batch_size=conf.batch_size,
target=conf.device_target,
)
step_size = dataset.get_dataset_size()
# Define net
net = WRN(160, 3, conf.class_num)
# Load checkpoint
param_dict = load_checkpoint(conf.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
# Define loss and model
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
model = Model(net, loss_fn=loss, metrics={
'top_1_accuracy', 'top_5_accuracy',
})
# Eval model
res = model.eval(dataset)
print('result:', res, 'checkpoint:', conf.checkpoint_path)