diff --git a/mindspore/train/_utils.py b/mindspore/train/_utils.py index 1a29b7b932b..398e66636a5 100644 --- a/mindspore/train/_utils.py +++ b/mindspore/train/_utils.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -78,7 +78,7 @@ def _make_directory(path: str): """Make directory.""" if path is None or not isinstance(path, str) or path.strip() == "": logger.error("The path(%r) is invalid type.", path) - raise TypeError("Input path is invaild type") + raise TypeError("Input path is invalid type") path = os.path.realpath(path) logger.debug("The abs path is %r", path) diff --git a/mindspore/train/callback/_summary_collector.py b/mindspore/train/callback/_summary_collector.py index 84f35398f23..be8e4ca04d4 100644 --- a/mindspore/train/callback/_summary_collector.py +++ b/mindspore/train/callback/_summary_collector.py @@ -27,7 +27,7 @@ from mindspore import log as logger from mindspore import context from mindspore.common.tensor import Tensor from mindspore.common.parameter import Parameter -from mindspore.train.summary.summary_record import SummaryRecord +from mindspore.train.summary.summary_record import SummaryRecord, process_export_options from mindspore.train.summary.enums import PluginEnum, ModeEnum from mindspore.train.callback import Callback, ModelCheckpoint from mindspore.train import lineage_pb2 @@ -89,21 +89,21 @@ class SummaryCollector(Callback): For example, you can set {'collect_metric': False} to control not collecting metrics. The data that supports control is shown below. - - collect_metric: Whether to collect training metrics, currently only the loss is collected. + - collect_metric (bool): Whether to collect training metrics, currently only the loss is collected. The first output will be treated as the loss and it will be averaged. Optional: True/False. Default: True. - - collect_graph: Whether to collect the computational graph. Currently, only + - collect_graph (bool): Whether to collect the computational graph. Currently, only training computational graph is collected. Optional: True/False. Default: True. - - collect_train_lineage: Whether to collect lineage data for the training phase, + - collect_train_lineage (bool): Whether to collect lineage data for the training phase, this field will be displayed on the lineage page of Mindinsight. Optional: True/False. Default: True. - - collect_eval_lineage: Whether to collect lineage data for the evaluation phase, + - collect_eval_lineage (bool): Whether to collect lineage data for the evaluation phase, this field will be displayed on the lineage page of Mindinsight. Optional: True/False. Default: True. - - collect_input_data: Whether to collect dataset for each training. Currently only image data is supported. + - collect_input_data (bool): Whether to collect dataset for each training. + Currently only image data is supported. Optional: True/False. Default: True. + - collect_dataset_graph (bool): Whether to collect dataset graph for the training phase. Optional: True/False. Default: True. - - collect_dataset_graph: Whether to collect dataset graph for the training phase. - Optional: True/False. Default: True. - - histogram_regular: Collect weight and bias for parameter distribution page and displayed in MindInsight. - This field allows regular strings to control which parameters to collect. + - histogram_regular (Union[str, None]): Collect weight and bias for parameter distribution page + and displayed in MindInsight. This field allows regular strings to control which parameters to collect. Default: None, it means only the first five parameters are collected. It is not recommended to collect too many parameters at once, as it can affect performance. Note that if you collect too many parameters and run out of memory, the training will fail. @@ -127,6 +127,13 @@ class SummaryCollector(Callback): max_file_size (Optional[int]): The maximum size in bytes of each file that can be written to the disk. Default: None, which means no limit. For example, to write not larger than 4GB, specify `max_file_size=4 * 1024**3`. + export_options (Union[None, dict]): Perform custom operations on the export data. + Default: None, it means there is no export data. + You can customize the export data with a dictionary. For example, you can set {'tensor_format': 'npy'} + to export tensor as npy file. The data that supports control is shown below. + + - tensor_format (Union[str, None]): Customize the export tensor format. + Default: None, it means there is no export tensor. Raises: ValueError: If the parameter value is not expected. @@ -175,7 +182,8 @@ class SummaryCollector(Callback): keep_default_action=True, custom_lineage_data=None, collect_tensor_freq=None, - max_file_size=None): + max_file_size=None, + export_options=None): super(SummaryCollector, self).__init__() self._summary_dir = self._process_summary_dir(summary_dir) @@ -191,6 +199,8 @@ class SummaryCollector(Callback): self._check_positive('max_file_size', max_file_size, allow_none=True) self._max_file_size = max_file_size + self._export_options = process_export_options(export_options) + self._check_action(keep_default_action) self._collect_specified_data = self._process_specified_data(collect_specified_data, keep_default_action) @@ -209,7 +219,8 @@ class SummaryCollector(Callback): def __enter__(self): self._record = SummaryRecord(log_dir=self._summary_dir, max_file_size=self._max_file_size, - raise_exception=False) + raise_exception=False, + export_options=self._export_options) self._first_step, self._dataset_sink_mode = True, True return self diff --git a/mindspore/train/summary/_summary_adapter.py b/mindspore/train/summary/_summary_adapter.py index 66fc4c613f7..ff19d945516 100644 --- a/mindspore/train/summary/_summary_adapter.py +++ b/mindspore/train/summary/_summary_adapter.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -36,13 +36,14 @@ EVENT_FILE_INIT_VERSION = 1 F32_MIN, F32_MAX = np.finfo(np.float32).min, np.finfo(np.float32).max -def get_event_file_name(prefix, suffix): +def get_event_file_name(prefix, suffix, seconds=None): """ Create file name: file_prefix + EVENT_FILE_NAME_MARK + time(seconds) + "." + Hostname + file_suffix. Args: prefix (str): The prefix of file name. suffix (str): The suffix of file name. + seconds (str): The time stamp of file name. Returns: String, the name of event log file. @@ -51,6 +52,8 @@ def get_event_file_name(prefix, suffix): Validator.check_str_by_regular(suffix) file_name = "" time_second = str(int(time.time())) + if seconds is not None: + time_second = seconds hostname = platform.node() if prefix is not None: @@ -96,8 +99,9 @@ def package_summary_event(data_list, step, wall_time): Package the summary to event protobuffer. Args: - data_id (Number): Summary data id. + data_list (list): Summary data list. step (Number): The recode step index. + wall_time (float): The wall time. Returns: Summary, the summary event. diff --git a/mindspore/train/summary/_writer_pool.py b/mindspore/train/summary/_writer_pool.py index 30c82e20744..f09a47b2f7f 100644 --- a/mindspore/train/summary/_writer_pool.py +++ b/mindspore/train/summary/_writer_pool.py @@ -19,11 +19,12 @@ import signal from collections import deque import mindspore.log as logger +from mindspore.train.summary.enums import PluginEnum, WriterPluginEnum from ._lineage_adapter import serialize_to_lineage_event from ._summary_adapter import package_graph_event, package_summary_event from ._explain_adapter import package_explain_event -from .writer import LineageWriter, SummaryWriter, ExplainWriter +from .writer import LineageWriter, SummaryWriter, ExplainWriter, ExportWriter try: from multiprocessing import get_context @@ -37,17 +38,24 @@ def _pack_data(datadict, wall_time): result, summaries, step = [], [], None for plugin, datalist in datadict.items(): for data in datalist: - if plugin == 'graph': + if plugin == PluginEnum.GRAPH.value: result.append([plugin, package_graph_event(data.get('value')).SerializeToString()]) - elif plugin in ('train_lineage', 'eval_lineage', 'custom_lineage_data', 'dataset_graph'): + elif plugin in (PluginEnum.TRAIN_LINEAGE.value, PluginEnum.EVAL_LINEAGE.value, + PluginEnum.CUSTOM_LINEAGE_DATA.value, PluginEnum.DATASET_GRAPH.value): result.append([plugin, serialize_to_lineage_event(plugin, data.get('value'))]) - elif plugin in ('scalar', 'tensor', 'histogram', 'image'): + elif plugin in (PluginEnum.SCALAR.value, PluginEnum.TENSOR.value, PluginEnum.HISTOGRAM.value, + PluginEnum.IMAGE.value): summaries.append({'_type': plugin.title(), 'name': data.get('tag'), 'data': data.get('value')}) step = data.get('step') - elif plugin == 'explainer': + elif plugin == PluginEnum.EXPLAINER.value: result.append([plugin, package_explain_event(data.get('value'))]) + + if 'export_option' in data: + result.append([WriterPluginEnum.EXPORTER.value, data]) + if summaries: - result.append(['summary', package_summary_event(summaries, step, wall_time).SerializeToString()]) + result.append( + [WriterPluginEnum.SUMMARY.value, package_summary_event(summaries, step, wall_time).SerializeToString()]) return result @@ -60,6 +68,7 @@ class WriterPool(ctx.Process): max_file_size (Optional[int]): The maximum size of each file that can be written to disk in bytes. raise_exception (bool, optional): Sets whether to throw an exception when an RuntimeError exception occurs in recording data. Default: False, this means that error logs are printed and no exception is thrown. + export_options (Union[None, dict]): Perform custom operations on the export data. Default: None. filedict (dict): The mapping from plugin to filename. """ @@ -114,12 +123,14 @@ class WriterPool(ctx.Process): self._writers_ = [] for plugin, filename in self._filedict.items(): filepath = os.path.join(self._base_dir, filename) - if plugin == 'summary': + if plugin == WriterPluginEnum.SUMMARY.value: self._writers_.append(SummaryWriter(filepath, self._max_file_size)) - elif plugin == 'lineage': + elif plugin == WriterPluginEnum.LINEAGE.value: self._writers_.append(LineageWriter(filepath, self._max_file_size)) - elif plugin == 'explainer': + elif plugin == WriterPluginEnum.EXPLAINER.value: self._writers_.append(ExplainWriter(filepath, self._max_file_size)) + elif plugin == WriterPluginEnum.EXPORTER.value: + self._writers_.append(ExportWriter(filepath, self._max_file_size)) return self._writers_ def _write(self, plugin, data): diff --git a/mindspore/train/summary/enums.py b/mindspore/train/summary/enums.py index 84044eab6ca..1d466a52fc6 100644 --- a/mindspore/train/summary/enums.py +++ b/mindspore/train/summary/enums.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -34,7 +34,17 @@ class PluginEnum(BaseEnum): HISTOGRAM = 'histogram' TRAIN_LINEAGE = 'train_lineage' EVAL_LINEAGE = 'eval_lineage' + CUSTOM_LINEAGE_DATA = 'custom_lineage_data' DATASET_GRAPH = 'dataset_graph' + EXPLAINER = 'explainer' + + +class WriterPluginEnum(Enum): + """The list of extra plugins.""" + EXPORTER = 'exporter' + EXPLAINER = 'explainer' + SUMMARY = 'summary' + LINEAGE = 'lineage' class ModeEnum(BaseEnum): diff --git a/mindspore/train/summary/summary_record.py b/mindspore/train/summary/summary_record.py index 4c0e1997233..01ccb5e3e07 100644 --- a/mindspore/train/summary/summary_record.py +++ b/mindspore/train/summary/summary_record.py @@ -17,6 +17,7 @@ import atexit import os import re import threading +import time from collections import defaultdict from mindspore import log as logger @@ -24,7 +25,7 @@ from mindspore.nn import Cell from ..._c_expression import Tensor from ..._checkparam import Validator -from .._utils import _check_lineage_value, _check_to_numpy, _make_directory +from .._utils import _check_lineage_value, _check_to_numpy, _make_directory, check_value_type from ._summary_adapter import get_event_file_name, package_graph_event from ._explain_adapter import check_explain_proto from ._writer_pool import WriterPool @@ -34,6 +35,9 @@ from ._writer_pool import WriterPool _summary_lock = threading.Lock() # cache the summary data _summary_tensor_cache = {} +_DEFAULT_EXPORT_OPTIONS = { + 'tensor_format': 'npy', +} def _cache_summary_tensor_data(summary): @@ -57,6 +61,27 @@ def _get_summary_tensor_data(): return data +def process_export_options(export_options): + """Check specified data type and value.""" + if export_options is None: + return None + + check_value_type('export_options', export_options, [dict, type(None)]) + + for param_name in export_options: + check_value_type(param_name, param_name, [str]) + + unexpected_params = set(export_options) - set(_DEFAULT_EXPORT_OPTIONS) + if unexpected_params: + raise ValueError(f'For `export_options` the keys {unexpected_params} are unsupported, ' + f'expect the follow keys: {list(_DEFAULT_EXPORT_OPTIONS.keys())}') + + for item in set(export_options): + check_value_type(item, export_options.get(item), [str, type(None)]) + + return export_options + + class SummaryRecord: """ SummaryRecord is used to record the summary data and lineage data. @@ -81,6 +106,13 @@ class SummaryRecord: Unlimited by default. For example, to write not larger than 4GB, specify `max_file_size=4 * 1024**3`. raise_exception (bool, optional): Sets whether to throw an exception when an RuntimeError exception occurs in recording data. Default: False, this means that error logs are printed and no exception is thrown. + export_options (Union[None, dict]): Perform custom operations on the export data. + Default: None, it means there is no export data. + You can customize the export data with a dictionary. For example, you can set {'tensor_format': 'npy'} + to export tensor as npy file. The data that supports control is shown below. + + - tensor_format (Union[str, None]): Customize the export tensor format. + Default: None, it means there is no export tensor. Raises: TypeError: If the parameter type is incorrect. @@ -99,7 +131,7 @@ class SummaryRecord: """ def __init__(self, log_dir, file_prefix="events", file_suffix="_MS", - network=None, max_file_size=None, raise_exception=False): + network=None, max_file_size=None, raise_exception=False, export_options=None): self._closed, self._event_writer = False, None self._mode, self._data_pool = 'train', defaultdict(list) @@ -126,13 +158,20 @@ class SummaryRecord: self.network = network self.has_graph = False + seconds = str(int(time.time())) # create the summary writer file - self.event_file_name = get_event_file_name(self.prefix, self.suffix) + self.event_file_name = get_event_file_name(self.prefix, self.suffix, seconds) self.full_file_name = os.path.join(self.log_path, self.event_file_name) + self._export_options = process_export_options(export_options) + export_dir = '' + if self._export_options is not None: + export_dir = "export_{}".format(seconds) + filename_dict = dict(summary=self.full_file_name, lineage=get_event_file_name(self.prefix, '_lineage'), - explainer=get_event_file_name(self.prefix, '_explain')) + explainer=get_event_file_name(self.prefix, '_explain'), + exporter=export_dir) self._event_writer = WriterPool(log_dir, max_file_size, raise_exception, @@ -211,7 +250,11 @@ class SummaryRecord: if name in {item['tag'] for item in self._data_pool[plugin]}: entry = repr(f'{name}/{plugin}') logger.warning(f'{entry} has duplicate values. Only the newest one will be recorded.') - self._data_pool[plugin].append(dict(tag=name, value=np_value)) + data = dict(tag=name, value=np_value) + export_plugin = '{}_format'.format(plugin) + if self._export_options is not None and export_plugin in self._export_options: + data['export_option'] = self._export_options.get(export_plugin) + self._data_pool[plugin].append(data) elif plugin in ('train_lineage', 'eval_lineage', 'dataset_graph', 'custom_lineage_data'): _check_lineage_value(plugin, value) diff --git a/mindspore/train/summary/writer.py b/mindspore/train/summary/writer.py index b74ac7587b0..8dff209f3a2 100644 --- a/mindspore/train/summary/writer.py +++ b/mindspore/train/summary/writer.py @@ -15,12 +15,19 @@ """Writes events to disk in a logdir.""" import os import stat +from urllib.parse import quote from shutil import disk_usage +import numpy as np + +from mindspore.train.summary.enums import PluginEnum, WriterPluginEnum + +from .._utils import _make_directory from ..._c_expression import EventWriter_ from ._summary_adapter import package_init_event FREE_DISK_SPACE_TIMES = 32 +FILE_MODE = 0o600 class BaseWriter: @@ -79,11 +86,11 @@ class SummaryWriter(BaseWriter): def init_writer(self): """Write some metadata etc.""" - self.write('summary', package_init_event().SerializeToString()) + self.write(WriterPluginEnum.SUMMARY.value, package_init_event().SerializeToString()) def write(self, plugin, data): """Write data to file.""" - if plugin in ('summary', 'graph'): + if plugin in (WriterPluginEnum.SUMMARY.value, PluginEnum.GRAPH.value): super().write(plugin, data) @@ -92,7 +99,8 @@ class LineageWriter(BaseWriter): def write(self, plugin, data): """Write data to file.""" - if plugin in ('dataset_graph', 'train_lineage', 'eval_lineage', 'custom_lineage_data'): + if plugin in (PluginEnum.DATASET_GRAPH.value, PluginEnum.TRAIN_LINEAGE.value, PluginEnum.EVAL_LINEAGE.value, + PluginEnum.CUSTOM_LINEAGE_DATA.value): super().write(plugin, data) @@ -101,5 +109,64 @@ class ExplainWriter(BaseWriter): def write(self, plugin, data): """Write data to file.""" - if plugin == 'explainer': + if plugin == WriterPluginEnum.EXPLAINER.value: super().write(plugin, data) + + +class ExportWriter(BaseWriter): + """ExportWriter for export data.""" + + def write(self, plugin, data): + """Write data to file.""" + if plugin == WriterPluginEnum.EXPORTER.value: + self.export_data(data, data.get('export_option')) + + def flush(self): + """Flush the writer.""" + + def close(self): + """Close the writer.""" + + def export_data(self, data, export_option): + """ + export the tensor data. + + Args: + data (dict): Export data info. + export_option (Union[None, str]): The export options. + """ + options = { + 'npy': self._export_npy + } + + if export_option in options: + options[export_option](data, self._filepath, self._max_file_size) + + @staticmethod + def _export_npy(data, export_dir, max_file_size): + """ + export the tensor data as npy. + + Args: + data (dict): Export data info. + export_dir (str): The path of export dir. + max_file_size (Optional[int]): The maximum size in bytes of each file that can be written to the disk. + """ + tag = quote(data.get('tag'), safe="") + step = int(data.get('step')) + np_value = data.get('value') + path = _make_directory(os.path.join(export_dir, 'tensor')) + + # 128 is the typical length of header of npy file + metadata_length = 128 + required_length = np_value.nbytes + metadata_length + if disk_usage(path).free < required_length * FREE_DISK_SPACE_TIMES: + raise RuntimeError(f"The disk space may be soon exhausted by the '{path}'.") + + if max_file_size is not None and max_file_size < required_length: + raise RuntimeWarning(f"'max_file_size' reached: There are {max_file_size} bytes remaining, " + f"but the '{path}' requires to write {required_length} bytes.") + + np_path = "{}/{}_{}.npy".format(path, tag, step) + np.save(np_path, np_value) + os.chmod(np_path, FILE_MODE) diff --git a/tests/st/summary/test_summary_collector.py b/tests/st/summary/test_summary_collector.py index 2d96d472060..6a7588eb66e 100644 --- a/tests/st/summary/test_summary_collector.py +++ b/tests/st/summary/test_summary_collector.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -170,13 +170,17 @@ class TestSummary: def test_summarycollector_user_defind(self): """Test SummaryCollector with user defind.""" summary_dir = self._run_network(dataset_sink_mode=True, num_samples=2, - custom_lineage_data={'test': 'self test'}) + custom_lineage_data={'test': 'self test'}, + export_options={'tensor_format': 'npy'}) tag_list = self._list_summary_tags(summary_dir) + file_list = self._list_tensor_files(summary_dir) # There will not record input data when dataset sink mode is True expected_tags = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto', 'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'} assert set(expected_tags) == set(tag_list) + expected_files = {'tensor_1.npy'} + assert set(expected_files) == set(file_list) @staticmethod def _list_summary_tags(summary_dir): @@ -198,3 +202,21 @@ class TestSummary: for value in summary_event.summary.value: tags.append(value.tag) return tags + + @staticmethod + def _list_tensor_files(summary_dir): + """list tensor tags.""" + export_file_path = '' + for file in os.listdir(summary_dir): + if re.search("export_", file): + export_file_path = os.path.join(summary_dir, file) + break + assert export_file_path + tensor_file_path = os.path.join(export_file_path, "tensor") + assert tensor_file_path + + tensors = list() + for file in os.listdir(tensor_file_path): + tensors.append(file) + + return tensors diff --git a/tests/ut/python/train/summary/test_summary_collector.py b/tests/ut/python/train/summary/test_summary_collector.py index d7ccc07c22a..0eedc3fb1e6 100644 --- a/tests/ut/python/train/summary/test_summary_collector.py +++ b/tests/ut/python/train/summary/test_summary_collector.py @@ -143,6 +143,18 @@ class TestSummaryCollector: assert expected_msg == str(exc.value) + @pytest.mark.parametrize("export_options", [123]) + def test_params_with_export_options_type_error(self, export_options): + """Test type error scenario for collect specified data param.""" + summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir) + with pytest.raises(TypeError) as exc: + SummaryCollector(summary_dir, export_options=export_options) + + expected_msg = f"For `export_options` the type should be a valid type of ['dict', 'NoneType'], " \ + f"but got {type(export_options).__name__}." + + assert expected_msg == str(exc.value) + @pytest.mark.parametrize("collect_specified_data", [ { 123: 123 @@ -204,6 +216,15 @@ class TestSummaryCollector: expected_msg = f"For `collect_specified_data` the keys {set(data)} are unsupported" assert expected_msg in str(exc.value) + def test_params_with_export_options_unexpected_key(self): + """Test the export_options parameter with unexpected key.""" + summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir) + data = {'unexpected_key': "value"} + with pytest.raises(ValueError) as exc: + SummaryCollector(summary_dir, export_options=data) + expected_msg = f"For `export_options` the keys {set(data)} are unsupported" + assert expected_msg in str(exc.value) + @pytest.mark.parametrize("custom_lineage_data", [ 123, {