forked from mindspore-Ecosystem/mindspore
!10619 add timedistributed
From: @d00562747 Reviewed-by: Signed-off-by:
This commit is contained in:
commit
f80b28313f
|
@ -53,7 +53,7 @@ bool AssignCPUKernel::Launch(const std::vector<AddressPtr> &inputs, const std::v
|
|||
MS_LOG(EXCEPTION) << "Memcpy size must <= max_size, but got memcpy size is : " << total_size
|
||||
<< ", max size is : " << max_size;
|
||||
}
|
||||
int ret = memcpy_s(inputs[0]->addr, total_size, inputs[1]->addr, total_size);
|
||||
int ret = memcpy_s(inputs[0]->addr, max_size, inputs[1]->addr, total_size);
|
||||
if (ret != 0) {
|
||||
MS_LOG(EXCEPTION) << "memcpy_s error, error no " << ret;
|
||||
}
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
void MaximumCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
|
@ -216,6 +215,5 @@ void MaximumCPUKernel<T>::BroadcastArithTensors(const T *input_x, const T *input
|
|||
output[i] = MaximumFunc(input_x[i], input_y[i]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -17,7 +17,8 @@ Layer.
|
|||
|
||||
The high-level components(Cells) used to construct the neural network.
|
||||
"""
|
||||
from . import activation, normalization, container, conv, lstm, basic, embedding, pooling, image, quant, math, combined
|
||||
from . import activation, normalization, container, conv, lstm, basic, embedding, pooling, image, quant, math, \
|
||||
combined, timedistributed
|
||||
from .activation import *
|
||||
from .normalization import *
|
||||
from .container import *
|
||||
|
@ -30,6 +31,7 @@ from .image import *
|
|||
from .quant import *
|
||||
from .math import *
|
||||
from .combined import *
|
||||
from .timedistributed import *
|
||||
|
||||
__all__ = []
|
||||
__all__.extend(activation.__all__)
|
||||
|
@ -44,3 +46,4 @@ __all__.extend(image.__all__)
|
|||
__all__.extend(quant.__all__)
|
||||
__all__.extend(math.__all__)
|
||||
__all__.extend(combined.__all__)
|
||||
__all__.extend(timedistributed.__all__)
|
||||
|
|
|
@ -0,0 +1,138 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Time Distributed."""
|
||||
|
||||
from mindspore.ops.primitive import constexpr, Primitive
|
||||
from mindspore.ops import Reshape, Transpose, Pack, Unpack
|
||||
from mindspore.common.dtype import tensor
|
||||
from ..cell import Cell
|
||||
|
||||
__all__ = ['TimeDistributed']
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_reshape_pos(reshape_pos, inputs_shape, outputs_shape):
|
||||
if reshape_pos >= len(outputs_shape) or inputs_shape[reshape_pos] != outputs_shape[reshape_pos]:
|
||||
raise ValueError("The parameter reshape_with_axis is invalid in the input and output of TimeDistributed. "
|
||||
"You may try pass parameters without reshape_with_axis.")
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_expand_dims_axis(time_axis, ndim):
|
||||
if time_axis > ndim:
|
||||
raise ValueError("The parameter time_axis is invalid in the input. "
|
||||
"The value of time_axis should be in range of [{}, {}].".format(-ndim - 1, ndim))
|
||||
|
||||
|
||||
@constexpr
|
||||
def _generate_perm(axis_a, axis_b, length):
|
||||
perm = tuple(range(length))
|
||||
axis_a, axis_b = (axis_a, axis_b) if axis_a < axis_b else (axis_b, axis_a)
|
||||
return perm[:axis_a] + perm[axis_a + 1: axis_b + 1] + (perm[axis_a],) + perm[axis_b + 1:]
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_data(flag):
|
||||
if not flag:
|
||||
raise TypeError("The inputs and outputs shuould be a Tensor.")
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_inputs_dim(shape):
|
||||
if len(shape) < 3:
|
||||
raise ValueError("The inputs should be at least 3D.")
|
||||
|
||||
|
||||
class TimeDistributed(Cell):
|
||||
r"""
|
||||
The time distributed layer.
|
||||
|
||||
Time distributed is a wrapper which allows to apply a layer to every temporal slice of an input.
|
||||
And the input should be at least 3D.
|
||||
There are two cases in the implementation.
|
||||
When reshape_with_axis provided, the reshape method will be chosen, which is more efficient;
|
||||
otherwise, the method of dividing the inputs along time axis will be used, which is more general.
|
||||
For example, reshape_with_axis could not be provided when deal with batch normal.
|
||||
|
||||
Args:
|
||||
layer(Union[Cell, Primitive]): The Cell or Primitive which will be wrapped.
|
||||
time_axis(int): The axis of time_step.
|
||||
reshape_with_axis(int): The axis which time_axis will be reshaped with. Default: 'None'.
|
||||
|
||||
Raises:
|
||||
TypeError: If cell is not a Cell or Primitive.
|
||||
|
||||
inputs:
|
||||
-**input**(Tensor)-Tensor of shape: math:'(N, T, *)'
|
||||
|
||||
Outputs:
|
||||
Tensor of shape: math:'(N, T, *)'
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.random.random([32, 10, 3]), mindspore.float32)
|
||||
>>> dense = nn.Dense(3, 6)
|
||||
>>> net = TimeDistributed(dense, time_axis=1, reshape_with_axis=0)
|
||||
>>> output = net(input)
|
||||
>>> print(output.shape)
|
||||
(32, 10, 6)
|
||||
"""
|
||||
|
||||
def __init__(self, layer, time_axis, reshape_with_axis=None):
|
||||
if not isinstance(layer, (Cell, Primitive)):
|
||||
raise TypeError("Please initialize TimeDistributed with mindspore.nn.Cell or "
|
||||
"mindspore.ops.Primitive instance. You passed: {input}".format(input=layer))
|
||||
super(TimeDistributed, self).__init__()
|
||||
self.layer = layer
|
||||
self.time_axis = time_axis
|
||||
self.reshape_with_axis = reshape_with_axis
|
||||
self.transpose = Transpose()
|
||||
self.reshape = Reshape()
|
||||
|
||||
def construct(self, inputs):
|
||||
_check_data(isinstance(inputs, tensor))
|
||||
_check_inputs_dim(inputs.shape)
|
||||
time_axis = self.time_axis % len(inputs.shape)
|
||||
if self.reshape_with_axis is not None:
|
||||
reshape_with_axis = self.reshape_with_axis % len(inputs.shape)
|
||||
inputs_shape = inputs.shape
|
||||
time_axis_new = len(inputs_shape) - 2 if reshape_with_axis == len(inputs_shape) - 1 \
|
||||
else (reshape_with_axis + 1 if time_axis > reshape_with_axis else
|
||||
reshape_with_axis - 1)
|
||||
reshape_pos = time_axis_new if time_axis_new < reshape_with_axis else reshape_with_axis
|
||||
perm = _generate_perm(time_axis_new, time_axis, len(inputs_shape))
|
||||
inputs = self.transpose(inputs, perm)
|
||||
inputs_shape_new = inputs.shape
|
||||
inputs = self.reshape(inputs, inputs_shape_new[: reshape_pos] + (-1,) + inputs_shape_new[reshape_pos + 2:])
|
||||
outputs = self.layer(inputs)
|
||||
_check_data(isinstance(outputs, tensor))
|
||||
_check_reshape_pos(reshape_pos, inputs.shape, outputs.shape)
|
||||
outputs_shape_new = outputs.shape[:reshape_pos] + inputs_shape_new[reshape_pos: reshape_pos + 2]
|
||||
if reshape_pos + 1 < len(outputs.shape):
|
||||
outputs_shape_new += outputs.shape[reshape_pos + 1:]
|
||||
return self.reshape(outputs, outputs_shape_new)
|
||||
|
||||
unpack = Unpack(time_axis)
|
||||
inputs = unpack(inputs)
|
||||
y = ()
|
||||
for item in inputs:
|
||||
outputs = self.layer(item)
|
||||
_check_data(isinstance(outputs, tensor))
|
||||
_check_expand_dims_axis(time_axis, outputs.ndim)
|
||||
y += (outputs,)
|
||||
y = Pack(time_axis)(y)
|
||||
return y
|
|
@ -0,0 +1,198 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
from mindspore import Tensor
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class TestTimeDistributed(nn.Cell):
|
||||
def __init__(self, cell, time_axis, reshape_with_axis=None):
|
||||
super(TestTimeDistributed, self).__init__()
|
||||
self.time_distributed = nn.TimeDistributed(cell, time_axis, reshape_with_axis)
|
||||
|
||||
def construct(self, inputs):
|
||||
return self.time_distributed(inputs)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_conv2d():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
conv2d = nn.Conv2d(12, 24, 4, has_bias=False, weight_init='normal')
|
||||
output_expect = conv2d(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(conv2d, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(np.abs(output[:, i, :] - output_expect) < 1e-5)
|
||||
print("Conv2D layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_maxpool2d():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
pool = nn.MaxPool2d(kernel_size=3, stride=1)
|
||||
output_expect = pool(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(pool, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("MaxPooling2D layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_dense():
|
||||
inputs = np.random.randint(0, 10, [32, 10])
|
||||
dense = nn.Dense(10, 6)
|
||||
output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(dense, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Dense layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_dense_with_reshape_axis_not_first():
|
||||
inputs = np.random.randint(0, 10, [32, 10])
|
||||
dense = nn.Dense(10, 6)
|
||||
output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([1, 32, 10]).repeat(6, axis=0)
|
||||
time_distributed = TestTimeDistributed(dense, time_axis=0, reshape_with_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[0]):
|
||||
assert np.all(output[i, :] == output_expect)
|
||||
print("Dense layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_argmax():
|
||||
inputs = np.random.randint(0, 10, [3, 4])
|
||||
argmax = ops.Argmax(output_type=mindspore.int32, axis=1)
|
||||
output_expect = argmax(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(argmax, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i] == output_expect)
|
||||
print("Argmax op wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_flatten():
|
||||
inputs = np.random.randint(0, 10, [3, 4, 5])
|
||||
flatten = nn.Flatten()
|
||||
output_expect = flatten(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4, 5]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(flatten, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Flatten op wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_conv2d_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
conv2d = nn.Conv2d(12, 24, 4, has_bias=False, weight_init='normal')
|
||||
output_expect = conv2d(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(conv2d, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Conv2D layer with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_maxpool2d_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
pool = nn.MaxPool2d(kernel_size=3, stride=1)
|
||||
output_expect = pool(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(pool, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("MaxPooling2D layer with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_dense_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [32, 10])
|
||||
dense = nn.Dense(10, 6)
|
||||
output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(dense, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Dense layer with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_argmax_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [3, 4])
|
||||
argmax = ops.Argmax(output_type=mindspore.int32, axis=1)
|
||||
output_expect = argmax(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(argmax, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i] == output_expect)
|
||||
print("Argmax op with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_flatten_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [3, 4, 5])
|
||||
flatten = nn.Flatten()
|
||||
output_expect = flatten(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4, 5]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(flatten, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Flatten op with no reshape axis wrapped successful")
|
|
@ -0,0 +1,198 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
from mindspore import Tensor
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
|
||||
class TestTimeDistributed(nn.Cell):
|
||||
def __init__(self, cell, time_axis, reshape_with_axis=None):
|
||||
super(TestTimeDistributed, self).__init__()
|
||||
self.time_distributed = nn.TimeDistributed(cell, time_axis, reshape_with_axis)
|
||||
|
||||
def construct(self, inputs):
|
||||
return self.time_distributed(inputs)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_conv2d():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
conv2d = nn.Conv2d(12, 24, 4, has_bias=False, weight_init='normal')
|
||||
output_expect = conv2d(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(conv2d, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(np.abs(output[:, i, :] - output_expect) < 1e-5)
|
||||
print("Conv2D layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_maxpool2d():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
pool = nn.MaxPool2d(kernel_size=3, stride=1)
|
||||
output_expect = pool(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(pool, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("MaxPooling2D layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_dense():
|
||||
inputs = np.random.randint(0, 10, [32, 10])
|
||||
dense = nn.Dense(10, 6)
|
||||
output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(dense, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Dense layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_dense_with_reshape_axis_not_first():
|
||||
inputs = np.random.randint(0, 10, [32, 10])
|
||||
dense = nn.Dense(10, 6)
|
||||
output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([1, 32, 10]).repeat(6, axis=0)
|
||||
time_distributed = TestTimeDistributed(dense, time_axis=0, reshape_with_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[0]):
|
||||
assert np.all(output[i, :] == output_expect)
|
||||
print("Dense layer wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_argmax():
|
||||
inputs = np.random.randint(0, 10, [3, 4])
|
||||
argmax = ops.Argmax(output_type=mindspore.int32, axis=1)
|
||||
output_expect = argmax(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(argmax, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i] == output_expect)
|
||||
print("Argmax op wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_flatten():
|
||||
inputs = np.random.randint(0, 10, [3, 4, 5])
|
||||
flatten = nn.Flatten()
|
||||
output_expect = flatten(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4, 5]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(flatten, time_axis=1, reshape_with_axis=0)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Flatten op wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_conv2d_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
conv2d = nn.Conv2d(12, 24, 4, has_bias=False, weight_init='normal')
|
||||
output_expect = conv2d(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(conv2d, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Conv2D layer with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_maxpool2d_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [32, 12, 10, 10])
|
||||
pool = nn.MaxPool2d(kernel_size=3, stride=1)
|
||||
output_expect = pool(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(pool, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("MaxPooling2D layer with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_dense_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [32, 10])
|
||||
dense = nn.Dense(10, 6)
|
||||
output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([32, 1, 10]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(dense, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Dense layer with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_argmax_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [3, 4])
|
||||
argmax = ops.Argmax(output_type=mindspore.int32, axis=1)
|
||||
output_expect = argmax(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(argmax, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i] == output_expect)
|
||||
print("Argmax op with no reshape axis wrapped successful")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_time_distributed_flatten_no_reshape_axis():
|
||||
inputs = np.random.randint(0, 10, [3, 4, 5])
|
||||
flatten = nn.Flatten()
|
||||
output_expect = flatten(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
inputs = inputs.reshape([3, 1, 4, 5]).repeat(6, axis=1)
|
||||
time_distributed = TestTimeDistributed(flatten, time_axis=1)
|
||||
output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy()
|
||||
for i in range(output.shape[1]):
|
||||
assert np.all(output[:, i, :] == output_expect)
|
||||
print("Flatten op with no reshape axis wrapped successful")
|
Loading…
Reference in New Issue