add transformer test

This commit is contained in:
zhangyinxia 2020-06-11 11:29:50 +08:00 committed by root
parent bd8c623b06
commit f3aa04bd4d
1 changed files with 182 additions and 0 deletions

View File

@ -0,0 +1,182 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Transformer testing script."""
import time
import os
import pytest
import numpy as np
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore.nn.optim import Adam
from mindspore.train.model import Model
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.callback import Callback
from mindspore import context
from model_zoo.Transformer.src.transformer_model import TransformerConfig
from model_zoo.Transformer.src.transformer_for_train import TransformerNetworkWithLoss, \
TransformerTrainOneStepWithLossScaleCell
from model_zoo.Transformer.src.config import cfg
from model_zoo.Transformer.src.dataset import create_transformer_dataset
from model_zoo.Transformer.src.lr_schedule import create_dynamic_lr
DATA_DIR = ["/home/workspace/mindspore_dataset/transformer/test-mindrecord"]
def get_config(version='base', batch_size=1):
"""get config"""
if version == 'large':
transformer_cfg = TransformerConfig(
batch_size=96,
seq_length=128,
vocab_size=36560,
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="relu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=128,
initializer_range=0.02,
label_smoothing=0.1,
input_mask_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16)
elif version == 'base':
transformer_cfg = TransformerConfig(
batch_size=96,
seq_length=128,
vocab_size=36560,
hidden_size=512,
num_hidden_layers=6,
num_attention_heads=8,
intermediate_size=2048,
hidden_act="relu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=128,
initializer_range=0.02,
label_smoothing=0.1,
input_mask_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16)
else:
transformer_cfg = TransformerConfig(batch_size=batch_size)
return transformer_cfg
class ModelCallback(Callback):
def __init__(self):
super(ModelCallback, self).__init__()
self.loss_list = []
self.overflow_list = []
self.lossscale_list = []
def step_end(self, run_context):
cb_params = run_context.original_args()
self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0])
self.overflow_list.append(cb_params.net_outputs[1].asnumpy())
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy())
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
class TimeMonitor(Callback):
"""Time Monitor."""
def __init__(self, data_size):
super(TimeMonitor, self).__init__()
self.data_size = data_size
self.epoch_mseconds_list = []
self.per_step_mseconds_list = []
def epoch_begin(self, run_context):
self.epoch_time = time.time()
def epoch_end(self, run_context):
epoch_mseconds = (time.time() - self.epoch_time) * 1000
self.epoch_mseconds_list.append(epoch_mseconds)
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_transformer():
"""
Transformer training.
"""
np.random.seed(1)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
version = os.getenv('VERSION', 'large')
batch_size = 96
epoch_size = 3
config = get_config(version=version, batch_size=batch_size)
dataset, repeat_count = create_transformer_dataset(epoch_count=epoch_size,
do_shuffle="false",
enable_data_sink="false",
dataset_path=DATA_DIR)
netwithloss = TransformerNetworkWithLoss(config, True)
lr = Tensor(create_dynamic_lr(schedule="constant*rsqrt_hidden*linear_warmup*rsqrt_decay",
training_steps=dataset.get_dataset_size()*epoch_size,
learning_rate=cfg.lr_schedule.learning_rate,
warmup_steps=cfg.lr_schedule.warmup_steps,
hidden_size=config.hidden_size), mstype.float32)
optimizer = Adam(netwithloss.trainable_params(), lr)
callback = ModelCallback()
scale_manager = DynamicLossScaleManager(init_loss_scale=4194304,
scale_factor=cfg.scale_factor,
scale_window=3)
update_cell = scale_manager.get_update_cell()
netwithgrads = TransformerTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
scale_update_cell=update_cell)
netwithgrads.set_train(True)
time_monitor_callback = TimeMonitor(dataset.get_dataset_size())
model = Model(netwithgrads)
model.train(repeat_count, dataset, callbacks=[time_monitor_callback, callback], dataset_sink_mode=False)
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
loss_value = np.array(callback.loss_list)
assert np.allclose(loss_value[0], 11.241624, 0, 0.000005)
expect_loss_value = [11.241624, 11.243232, 11.217465, 11.204196, 11.2138195,
11.215386, 11.19053, 11.150403, 11.191858, 11.160057]
print("loss value: {}".format(loss_value))
assert np.allclose(loss_value[0:10], expect_loss_value, 0, 0.0005)
overflow = np.array(callback.overflow_list)
expect_overflow = [False, False, False, True, False, False, False, True, False, False]
print("overflow: {}".format(overflow))
assert (overflow[0:10] == expect_overflow).all()
loss_scale = np.array(callback.lossscale_list)
expect_loss_scale = [4194304.0, 4194304.0, 8388608.0, 4194304.0, 4194304.0,
4194304.0, 8388608.0, 4194304.0, 4194304.0, 4194304.0]
print("loss scale: {}".format(loss_scale))
assert np.allclose(loss_scale[0:10], expect_loss_scale, 0, 0)
epoch_mseconds = np.array(time_monitor_callback.epoch_mseconds_list)[2]
expect_epoch_mseconds = 3180
print("epoch mseconds: {}".format(epoch_mseconds))
assert epoch_mseconds <= expect_epoch_mseconds + 20
per_step_mseconds = np.array(time_monitor_callback.per_step_mseconds_list)[2]
expect_per_step_mseconds = 318
print("per step mseconds: {}".format(per_step_mseconds))
assert per_step_mseconds <= expect_per_step_mseconds + 2
if __name__ == '__main__':
test_transformer()