diff --git a/model_zoo/official/recommend/wide_and_deep_multitable/eval.py b/model_zoo/official/recommend/wide_and_deep_multitable/eval.py new file mode 100644 index 00000000000..9e24ef4c8c7 --- /dev/null +++ b/model_zoo/official/recommend/wide_and_deep_multitable/eval.py @@ -0,0 +1,97 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" training_and_evaluating """ + +import os +import sys +from mindspore import Model, context +from mindspore.train.serialization import load_checkpoint, load_param_into_net + +from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel +from src.callbacks import LossCallBack, EvalCallBack +from src.datasets import create_dataset, compute_emb_dim +from src.metrics import AUCMetric +from src.config import WideDeepConfig +sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + + +def get_WideDeep_net(config): + """ + Get network of wide&deep model. + """ + WideDeep_net = WideDeepModel(config) + + loss_net = NetWithLossClass(WideDeep_net, config) + train_net = TrainStepWrap(loss_net, config) + eval_net = PredictWithSigmoid(WideDeep_net) + + return train_net, eval_net + + +class ModelBuilder(): + """ + ModelBuilder. + """ + def __init__(self): + pass + + def get_hook(self): + pass + + def get_train_hook(self): + hooks = [] + callback = LossCallBack() + hooks.append(callback) + + if int(os.getenv('DEVICE_ID')) == 0: + pass + return hooks + + def get_net(self, config): + return get_WideDeep_net(config) + +def train_and_eval(config): + """ + train_and_eval. + """ + data_path = config.data_path + epochs = config.epochs + print("epochs is {}".format(epochs)) + + ds_eval = create_dataset(data_path, train_mode=False, epochs=1, + batch_size=config.batch_size, is_tf_dataset=config.is_tf_dataset) + + print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) + + net_builder = ModelBuilder() + + train_net, eval_net = net_builder.get_net(config) + param_dict = load_checkpoint(config.ckpt_path) + load_param_into_net(eval_net, param_dict) + + auc_metric = AUCMetric() + model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric}) + + eval_callback = EvalCallBack(model, ds_eval, auc_metric, config) + + model.eval(ds_eval, callbacks=eval_callback) + + +if __name__ == "__main__": + wide_and_deep_config = WideDeepConfig() + wide_and_deep_config.argparse_init() + compute_emb_dim(wide_and_deep_config) + context.set_context(mode=context.GRAPH_MODE, device_target="Davinci") + train_and_eval(wide_and_deep_config)