forked from mindspore-Ecosystem/mindspore
!4835 Add eval.py to the Wide&Deep model
Merge pull request !4835 from huangxinjing/outbrain-eval
This commit is contained in:
commit
f04899fa57
|
@ -0,0 +1,97 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" training_and_evaluating """
|
||||
|
||||
import os
|
||||
import sys
|
||||
from mindspore import Model, context
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
||||
from src.callbacks import LossCallBack, EvalCallBack
|
||||
from src.datasets import create_dataset, compute_emb_dim
|
||||
from src.metrics import AUCMetric
|
||||
from src.config import WideDeepConfig
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
|
||||
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||
train_net = TrainStepWrap(loss_net, config)
|
||||
eval_net = PredictWithSigmoid(WideDeep_net)
|
||||
|
||||
return train_net, eval_net
|
||||
|
||||
|
||||
class ModelBuilder():
|
||||
"""
|
||||
ModelBuilder.
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def get_hook(self):
|
||||
pass
|
||||
|
||||
def get_train_hook(self):
|
||||
hooks = []
|
||||
callback = LossCallBack()
|
||||
hooks.append(callback)
|
||||
|
||||
if int(os.getenv('DEVICE_ID')) == 0:
|
||||
pass
|
||||
return hooks
|
||||
|
||||
def get_net(self, config):
|
||||
return get_WideDeep_net(config)
|
||||
|
||||
def train_and_eval(config):
|
||||
"""
|
||||
train_and_eval.
|
||||
"""
|
||||
data_path = config.data_path
|
||||
epochs = config.epochs
|
||||
print("epochs is {}".format(epochs))
|
||||
|
||||
ds_eval = create_dataset(data_path, train_mode=False, epochs=1,
|
||||
batch_size=config.batch_size, is_tf_dataset=config.is_tf_dataset)
|
||||
|
||||
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
|
||||
|
||||
net_builder = ModelBuilder()
|
||||
|
||||
train_net, eval_net = net_builder.get_net(config)
|
||||
param_dict = load_checkpoint(config.ckpt_path)
|
||||
load_param_into_net(eval_net, param_dict)
|
||||
|
||||
auc_metric = AUCMetric()
|
||||
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
||||
|
||||
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
|
||||
|
||||
model.eval(ds_eval, callbacks=eval_callback)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
wide_and_deep_config = WideDeepConfig()
|
||||
wide_and_deep_config.argparse_init()
|
||||
compute_emb_dim(wide_and_deep_config)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Davinci")
|
||||
train_and_eval(wide_and_deep_config)
|
Loading…
Reference in New Issue