!4835 Add eval.py to the Wide&Deep model

Merge pull request !4835 from huangxinjing/outbrain-eval
This commit is contained in:
mindspore-ci-bot 2020-08-20 19:44:40 +08:00 committed by Gitee
commit f04899fa57
1 changed files with 97 additions and 0 deletions

View File

@ -0,0 +1,97 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" training_and_evaluating """
import os
import sys
from mindspore import Model, context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack
from src.datasets import create_dataset, compute_emb_dim
from src.metrics import AUCMetric
from src.config import WideDeepConfig
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def get_WideDeep_net(config):
"""
Get network of wide&deep model.
"""
WideDeep_net = WideDeepModel(config)
loss_net = NetWithLossClass(WideDeep_net, config)
train_net = TrainStepWrap(loss_net, config)
eval_net = PredictWithSigmoid(WideDeep_net)
return train_net, eval_net
class ModelBuilder():
"""
ModelBuilder.
"""
def __init__(self):
pass
def get_hook(self):
pass
def get_train_hook(self):
hooks = []
callback = LossCallBack()
hooks.append(callback)
if int(os.getenv('DEVICE_ID')) == 0:
pass
return hooks
def get_net(self, config):
return get_WideDeep_net(config)
def train_and_eval(config):
"""
train_and_eval.
"""
data_path = config.data_path
epochs = config.epochs
print("epochs is {}".format(epochs))
ds_eval = create_dataset(data_path, train_mode=False, epochs=1,
batch_size=config.batch_size, is_tf_dataset=config.is_tf_dataset)
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
net_builder = ModelBuilder()
train_net, eval_net = net_builder.get_net(config)
param_dict = load_checkpoint(config.ckpt_path)
load_param_into_net(eval_net, param_dict)
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
model.eval(ds_eval, callbacks=eval_callback)
if __name__ == "__main__":
wide_and_deep_config = WideDeepConfig()
wide_and_deep_config.argparse_init()
compute_emb_dim(wide_and_deep_config)
context.set_context(mode=context.GRAPH_MODE, device_target="Davinci")
train_and_eval(wide_and_deep_config)