diff --git a/mindspore/ops/_grad/grad_math_ops.py b/mindspore/ops/_grad/grad_math_ops.py index a27636177ce..ffd79e49b95 100755 --- a/mindspore/ops/_grad/grad_math_ops.py +++ b/mindspore/ops/_grad/grad_math_ops.py @@ -912,6 +912,17 @@ def get_bprop_bessel_i0e(self): return bprop +@bprop_getters.register(P.Atan) +def get_bprop_atan(self): + """Grad definition for `Atan` operation.""" + input_grad = G.AtanGrad() + + def bprop(x, out, dout): + dx = input_grad(x, dout) + return (dx,) + return bprop + + @bprop_getters.register(P.BesselI1e) def get_bprop_bessel_i1e(self): """Generate bprop for BesselI1e""" @@ -934,3 +945,16 @@ def get_bprop_bessel_i1e(self): dx = select(x_is_valid, tmp, 0.5 + zeros) return (dx,) return bprop + + +@bprop_getters.register(P.Atanh) +def get_bprop_atanh(self): + """Grad definition for `Atanh` operation.""" + power = P.Pow() + div = P.Div() + + def bprop(x, out, dout): + tmp = 1 - power(x, 2) + dx = div(1, tmp) * dout + return (dx,) + return bprop diff --git a/mindspore/ops/_op_impl/tbe/__init__.py b/mindspore/ops/_op_impl/tbe/__init__.py index b3eb5f0f218..6d11ba3752a 100644 --- a/mindspore/ops/_op_impl/tbe/__init__.py +++ b/mindspore/ops/_op_impl/tbe/__init__.py @@ -221,3 +221,6 @@ from .asin import _asin_tbe from .asin_grad import _asin_grad_tbe from .asinh import _asinh_tbe from .asinh_grad import _asinh_grad_tbe +from .atan import _atan_tbe +from .atan_grad import _atan_grad_tbe +from .atanh import _atanh_tbe diff --git a/mindspore/ops/_op_impl/tbe/atan.py b/mindspore/ops/_op_impl/tbe/atan.py new file mode 100644 index 00000000000..9562c573e3b --- /dev/null +++ b/mindspore/ops/_op_impl/tbe/atan.py @@ -0,0 +1,37 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""Atan op""" +from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType + +atan_op_info = TBERegOp("Atan") \ + .fusion_type("ELEMWISE") \ + .async_flag(False) \ + .binfile_name("atan.so") \ + .compute_cost(10) \ + .kernel_name("atan") \ + .partial_flag(True) \ + .op_pattern("formatAgnostic") \ + .input(0, "x", False, "required", "all") \ + .output(0, "y", False, "required", "all") \ + .dtype_format(DataType.F16_5HD, DataType.F16_5HD) \ + .dtype_format(DataType.F32_5HD, DataType.F32_5HD) \ + .get_op_info() + + +@op_info_register(atan_op_info) +def _atan_tbe(): + """Atan TBE register""" + return diff --git a/mindspore/ops/_op_impl/tbe/atan_grad.py b/mindspore/ops/_op_impl/tbe/atan_grad.py new file mode 100644 index 00000000000..b757bc2bae0 --- /dev/null +++ b/mindspore/ops/_op_impl/tbe/atan_grad.py @@ -0,0 +1,43 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""AtanGrad op""" +from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType + +atan_grad_op_info = TBERegOp("AtanGrad") \ + .fusion_type("ELEMWISE") \ + .async_flag(False) \ + .binfile_name("atan_grad.so") \ + .compute_cost(10) \ + .kernel_name("atan_grad") \ + .partial_flag(True) \ + .input(0, "y", False, "required", "all") \ + .input(1, "dy", False, "required", "all") \ + .output(0, "z", False, "required", "all") \ + .dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \ + .dtype_format(DataType.F16_FracZ, DataType.F16_FracNZ, DataType.F16_FracZ) \ + .dtype_format(DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0) \ + .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \ + .dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \ + .dtype_format(DataType.F32_FracZ, DataType.F32_FracNZ, DataType.F32_FracZ) \ + .dtype_format(DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0) \ + .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ + .get_op_info() + + +@op_info_register(atan_grad_op_info) +def _atan_grad_tbe(): + """AtanGrad TBE register""" + return diff --git a/mindspore/ops/_op_impl/tbe/atanh.py b/mindspore/ops/_op_impl/tbe/atanh.py new file mode 100644 index 00000000000..d88e0d6105b --- /dev/null +++ b/mindspore/ops/_op_impl/tbe/atanh.py @@ -0,0 +1,37 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""Atanh op""" +from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType + +atanh_op_info = TBERegOp("Atanh") \ + .fusion_type("ELEMWISE") \ + .async_flag(False) \ + .binfile_name("atanh.so") \ + .compute_cost(10) \ + .kernel_name("atanh") \ + .partial_flag(True) \ + .op_pattern("formatAgnostic") \ + .input(0, "x", False, "required", "all") \ + .output(0, "y", False, "required", "all") \ + .dtype_format(DataType.F16_5HD, DataType.F16_5HD) \ + .dtype_format(DataType.F32_5HD, DataType.F32_5HD) \ + .get_op_info() + + +@op_info_register(atanh_op_info) +def _atanh_tbe(): + """Atanh TBE register""" + return diff --git a/mindspore/ops/operations/__init__.py b/mindspore/ops/operations/__init__.py index cdf907ce909..39cd97e5c09 100644 --- a/mindspore/ops/operations/__init__.py +++ b/mindspore/ops/operations/__init__.py @@ -50,7 +50,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2 NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus, Reciprocal, CumSum, Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, - Square, Sub, TensorAdd, Sign, Round, SquareSumAll) + Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh) from .random_ops import (RandomChoiceWithMask) from .nn_ops import (LSTM, SGD, Adam, ApplyMomentum, BatchNorm, BiasAdd, Conv2D, @@ -277,6 +277,8 @@ __all__ = [ "BitwiseXor", "BesselI0e", "BesselI1e", + "Atan", + "Atanh" ] __all__.extend(_quant_ops.__all__) diff --git a/mindspore/ops/operations/_grad_ops.py b/mindspore/ops/operations/_grad_ops.py index 6a047e4f1d2..6a2bf43e838 100644 --- a/mindspore/ops/operations/_grad_ops.py +++ b/mindspore/ops/operations/_grad_ops.py @@ -1151,3 +1151,25 @@ class RefToEmbed(Primitive): @prim_attr_register def __init__(self): pass + + +class AtanGrad(PrimitiveWithInfer): + """ + Computes AtanGrad of input element-wise. + + Returns: + Tensor, has the same type as input. + """ + + @prim_attr_register + def __init__(self): + """init AtanGrad""" + + def infer_shape(self, x, dout): + validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name) + return x + + def infer_dtype(self, x, dout): + args = {"x": x, "dout": dout} + validator.check_tensor_type_same(args, mstype.number_type, self.name) + return x diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index 0be11ebd1e3..3481ef9efce 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -2207,6 +2207,66 @@ class Round(PrimitiveWithInfer): return x_type +class Atan(PrimitiveWithInfer): + """ + Computes the trignometric inverse tangent of x element-wise. + + Inputs: + - **input_x** (Tensor): The input tensor. + + Outputs: + A Tensor. Has the same type as x. + + Examples: + >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32) + >>> tan = P.Tan() + >>> output_y = tan(input_x) + >>> atan = P.Atan() + >>> atan(output_y) + [[1.047, 07850001]] + """ + + @prim_attr_register + def __init__(self): + pass + + def infer_shape(self, x_shape): + return x_shape + + def infer_dtype(self, x_type): + validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.name) + return x_type + + +class Atanh(PrimitiveWithInfer): + """ + Computes inverse hyperbolic tangent of x element-wise. + + Inputs: + - **input_x** (Tensor): The input tensor. + + Outputs: + A Tensor. Has the same type as x. + + Examples: + >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32) + >>> atanh = P.Atanh() + >>> atanh(input_x) + [[1.8869909 1.058268]] + """ + + @prim_attr_register + def __init__(self): + pass + + def infer_shape(self, x_shape): + return x_shape + + def infer_dtype(self, x_type): + validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.name) + return x_type + + class Atan2(_MathBinaryOp): r""" Returns arctangent of input_x/input_y element-wise. diff --git a/tests/ut/python/ops/test_ops.py b/tests/ut/python/ops/test_ops.py index b84050cb175..2a915aafb72 100755 --- a/tests/ut/python/ops/test_ops.py +++ b/tests/ut/python/ops/test_ops.py @@ -680,6 +680,18 @@ test_case_math_ops = [ 'block': P.BesselI1e(), 'desc_inputs': [[2, 3]], 'desc_bprop': [[2, 3]]}), + ('Atan', { + 'block': P.Atan(), + 'desc_inputs': [[2, 3]], + 'desc_bprop': [[2, 3]]}), + ('AtanGrad', { + 'block': G.AtanGrad(), + 'desc_inputs': [[2, 3], [2, 3]], + 'skip': ['backward']}), + ('Atanh', { + 'block': P.Atanh(), + 'desc_inputs': [[2, 3]], + 'desc_bprop': [[2, 3]]}), ] test_case_nn_ops = [