forked from mindspore-Ecosystem/mindspore
modify export script file to support mindr and GPU
This commit is contained in:
parent
3f0aeaa8fc
commit
d5d3c7b349
|
@ -35,7 +35,7 @@ args = parser.parse_args()
|
|||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if args.platform != "GPU":
|
||||
if args.device_target != "GPU":
|
||||
raise ValueError("Only supported GPU now.")
|
||||
|
||||
net = efficientnet_b0(num_classes=cfg.num_classes,
|
||||
|
|
|
@ -12,26 +12,31 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""export checkpoint file into air models"""
|
||||
"""export checkpoint file into air, mindir and onnx models"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, context
|
||||
from mindspore.train.serialization import load_checkpoint, export
|
||||
from mindspore import Tensor, context, load_checkpoint, export
|
||||
|
||||
from src.gat import GAT
|
||||
from src.config import GatConfig
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
parser = argparse.ArgumentParser(description="GAT export")
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.")
|
||||
parser.add_argument("--file_name", type=str, default="gat", help="output file name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument("--device_target", type=str, default="Ascend",
|
||||
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
||||
args = parser.parse_args()
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='GAT_export')
|
||||
parser.add_argument('--ckpt_file', type=str, default='./ckpts/gat.ckpt', help='GAT ckpt file.')
|
||||
parser.add_argument('--output_file', type=str, default='gat.air', help='GAT output air name.')
|
||||
parser.add_argument('--dataset', type=str, default='cora', help='GAT dataset name.')
|
||||
args_opt = parser.parse_args()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
|
||||
|
||||
if args_opt.dataset == "citeseer":
|
||||
if __name__ == "__main__":
|
||||
|
||||
|
||||
if args.dataset == "citeseer":
|
||||
feature_size = [1, 3312, 3703]
|
||||
biases_size = [1, 3312, 3312]
|
||||
num_classes = 6
|
||||
|
@ -58,7 +63,7 @@ if __name__ == '__main__':
|
|||
ftr_drop=0.0)
|
||||
|
||||
gat_net.set_train(False)
|
||||
load_checkpoint(args_opt.ckpt_file, net=gat_net)
|
||||
load_checkpoint(args.ckpt_file, net=gat_net)
|
||||
gat_net.add_flags_recursive(fp16=True)
|
||||
|
||||
export(gat_net, Tensor(feature), Tensor(biases), file_name=args_opt.output_file, file_format="AIR")
|
||||
export(gat_net, Tensor(feature), Tensor(biases), file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
|
@ -16,24 +16,27 @@
|
|||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, context
|
||||
from mindspore.train.serialization import load_checkpoint, export
|
||||
from mindspore import Tensor, context, load_checkpoint, export
|
||||
|
||||
from src.gcn import GCN
|
||||
from src.config import ConfigGCN
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
parser = argparse.ArgumentParser(description="GCN export")
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.")
|
||||
parser.add_argument("--file_name", type=str, default="gcn", help="output file name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument("--device_target", type=str, default="Ascend",
|
||||
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
||||
args = parser.parse_args()
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='GCN_export')
|
||||
parser.add_argument('--ckpt_file', type=str, default='', help='GCN ckpt file.')
|
||||
parser.add_argument('--output_file', type=str, default='gcn.air', help='GCN output air name.')
|
||||
parser.add_argument('--dataset', type=str, default='cora', help='GCN dataset name.')
|
||||
args_opt = parser.parse_args()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = ConfigGCN()
|
||||
|
||||
if args_opt.dataset == "cora":
|
||||
if args.dataset == "cora":
|
||||
input_dim = 1433
|
||||
class_num = 7
|
||||
adj = Tensor(np.zeros((2708, 2708), np.float64))
|
||||
|
@ -47,7 +50,7 @@ if __name__ == '__main__':
|
|||
gcn_net = GCN(config, input_dim, class_num)
|
||||
|
||||
gcn_net.set_train(False)
|
||||
load_checkpoint(args_opt.ckpt_file, net=gcn_net)
|
||||
load_checkpoint(args.ckpt_file, net=gcn_net)
|
||||
gcn_net.add_flags_recursive(fp16=True)
|
||||
|
||||
export(gcn_net, adj, feature, file_name=args_opt.output_file, file_format="AIR")
|
||||
export(gcn_net, adj, feature, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
|
@ -25,11 +25,17 @@ from src.td_config import td_student_net_cfg
|
|||
from src.tinybert_model import BertModelCLS
|
||||
|
||||
parser = argparse.ArgumentParser(description='tinybert task distill')
|
||||
parser.add_argument('--ckpt_file', type=str, required=True, help='tinybert ckpt file.')
|
||||
parser.add_argument('--output_file', type=str, default='tinybert', help='tinybert output air name.')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="tinybert ckpt file.")
|
||||
parser.add_argument("--file_name", type=str, default="tinybert", help="output file name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument("--device_target", type=str, default="Ascend",
|
||||
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
||||
parser.add_argument('--task_name', type=str, default='SST-2', choices=['SST-2', 'QNLI', 'MNLI'], help='task name')
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
|
||||
|
||||
DEFAULT_NUM_LABELS = 2
|
||||
DEFAULT_SEQ_LENGTH = 128
|
||||
DEFAULT_BS = 32
|
||||
|
@ -37,8 +43,6 @@ task_params = {"SST-2": {"num_labels": 2, "seq_length": 64},
|
|||
"QNLI": {"num_labels": 2, "seq_length": 128},
|
||||
"MNLI": {"num_labels": 3, "seq_length": 128}}
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Task:
|
||||
"""
|
||||
Encapsulation class of get the task parameter.
|
||||
|
@ -78,4 +82,5 @@ if __name__ == '__main__':
|
|||
token_type_id = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
|
||||
input_mask = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
|
||||
|
||||
export(eval_model, input_ids, token_type_id, input_mask, file_name=args.output_file, file_format="AIR")
|
||||
input_data = [input_ids, token_type_id, input_mask]
|
||||
export(eval_model, *input_data, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
|
@ -13,48 +13,40 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
##############export checkpoint file into air and onnx models#################
|
||||
##############export checkpoint file into air, mindir and onnx models#################
|
||||
"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
from mindspore import Tensor, context, load_checkpoint, export, load_param_into_net
|
||||
|
||||
from src.wide_and_deep import WideDeepModel
|
||||
from eval import ModelBuilder
|
||||
from src.config import WideDeepConfig
|
||||
|
||||
class PredictWithSigmoid(nn.Cell):
|
||||
"""
|
||||
PredictWithSigmoid
|
||||
"""
|
||||
def __init__(self, network):
|
||||
super(PredictWithSigmoid, self).__init__()
|
||||
self.network = network
|
||||
self.sigmoid = P.Sigmoid()
|
||||
parser = argparse.ArgumentParser(description="wide_and_deep export")
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--file_name", type=str, default="wide_and_deep", help="output file name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument("--device_target", type=str, default="Ascend",
|
||||
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
||||
args = parser.parse_args()
|
||||
|
||||
def construct(self, batch_ids, batch_wts):
|
||||
logits, _, = self.network(batch_ids, batch_wts)
|
||||
pred_probs = self.sigmoid(logits)
|
||||
return pred_probs
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep predict model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
eval_net = PredictWithSigmoid(WideDeep_net)
|
||||
return eval_net
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
|
||||
|
||||
if __name__ == '__main__':
|
||||
widedeep_config = WideDeepConfig()
|
||||
widedeep_config.argparse_init()
|
||||
ckpt_path = widedeep_config.ckpt_path
|
||||
net = get_WideDeep_net(widedeep_config)
|
||||
param_dict = load_checkpoint(ckpt_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
net_builder = ModelBuilder()
|
||||
_, eval_net = net_builder.get_net(widedeep_config)
|
||||
|
||||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
load_param_into_net(eval_net, param_dict)
|
||||
eval_net.set_train(False)
|
||||
|
||||
ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32))
|
||||
wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32))
|
||||
input_tensor_list = [ids, wts]
|
||||
export(net, *input_tensor_list, file_name='wide_and_deep', file_format="ONNX")
|
||||
export(net, *input_tensor_list, file_name='wide_and_deep', file_format="AIR")
|
||||
label = Tensor(np.ones([widedeep_config.eval_batch_size, 1]).astype(np.float32))
|
||||
input_tensor_list = [ids, wts, label]
|
||||
export(eval_net, *input_tensor_list, file_name=args.file_name, file_format=args.file_format)
|
||||
|
|
Loading…
Reference in New Issue