forked from mindspore-Ecosystem/mindspore
support tensor set item the number value type is similar as tensor dtype not same
This commit is contained in:
parent
25b0037b7a
commit
d226a23b65
|
@ -276,7 +276,7 @@ def check_value_elements(data_dtype, types):
|
|||
else:
|
||||
raise TypeError(f"For '{TENSOR_SETITEM}', the data type of {i}th tensor '{ele_dtype}' "
|
||||
f"in value tuple is not consistent with assigned tensor data type '{data_dtype}'.")
|
||||
elif mstype.issubclass_(ele, data_dtype):
|
||||
elif mstype.dtype_to_pytype(ele) == mstype.dtype_to_pytype(data_dtype):
|
||||
scalars_number += 1
|
||||
else:
|
||||
raise TypeError(f"For '{TENSOR_SETITEM}', the {i}th element type '{ele}' in "
|
||||
|
|
|
@ -278,8 +278,8 @@ class TensorSetItemByMixedTensors_1(Cell):
|
|||
class TensorSetItemByMixedTensors_2(Cell):
|
||||
def __init__(self, value):
|
||||
super(TensorSetItemByMixedTensors_2, self).__init__()
|
||||
self.const = Tensor(np.ones((3, 4, 5, 6, 7, 8), np.float32))
|
||||
self.param = Parameter(Tensor(np.arange(3 * 4 * 5 * 6 * 7 * 8).reshape((3, 4, 5, 6, 7, 8)), mstype.float32),
|
||||
self.const = Tensor(np.ones((3, 4, 5, 6, 7, 8), np.float16))
|
||||
self.param = Parameter(Tensor(np.arange(3 * 4 * 5 * 6 * 7 * 8).reshape((3, 4, 5, 6, 7, 8)), mstype.float16),
|
||||
name="x")
|
||||
self.value = value
|
||||
|
||||
|
@ -911,7 +911,7 @@ test_cases = [
|
|||
Tensor(np.random.randint(3, size=(2, 1, 4, 5)), mstype.int32)],
|
||||
}),
|
||||
('TensorSetItemByMixedTensorsWithTensor_2', {
|
||||
'block': TensorSetItemByMixedTensors_2(value=Tensor(np.ones((3, 4, 2, 3, 4, 5), np.float32))),
|
||||
'block': TensorSetItemByMixedTensors_2(value=Tensor(np.ones((3, 4, 2, 3, 4, 5), np.float16))),
|
||||
'desc_inputs': [Tensor(np.random.randint(3, size=(3, 4, 5)), mstype.int32),
|
||||
Tensor(np.random.randint(4, size=(4, 5)), mstype.int32),
|
||||
Tensor(np.random.randint(3, size=(2, 1, 4, 5)), mstype.int32)],
|
||||
|
@ -923,9 +923,9 @@ test_cases = [
|
|||
Tensor(np.random.randint(3, size=(2, 1, 4, 5)), mstype.int32)],
|
||||
}),
|
||||
('TensorGetItemByMixedTensorsWithTupleOfTensor_2', {
|
||||
'block': TensorSetItemByMixedTensors_2(value=(Tensor(np.ones((4, 5), np.float32)),
|
||||
Tensor(np.zeros((4, 5), np.float32)),
|
||||
Tensor(np.ones((4, 5), np.float32)))),
|
||||
'block': TensorSetItemByMixedTensors_2(value=(Tensor(np.ones((4, 5), np.float16)),
|
||||
Tensor(np.zeros((4, 5), np.float16)),
|
||||
Tensor(np.ones((4, 5), np.float16)))),
|
||||
'desc_inputs': [Tensor(np.random.randint(3, size=(3, 4, 5)), mstype.int32),
|
||||
Tensor(np.random.randint(4, size=(4, 5)), mstype.int32),
|
||||
Tensor(np.random.randint(3, size=(2, 1, 4, 5)), mstype.int32)],
|
||||
|
|
Loading…
Reference in New Issue