forked from mindspore-Ecosystem/mindspore
[Docs] update formulas for math and array operators
This commit is contained in:
parent
b036a836a6
commit
c67bb608b0
|
@ -3181,11 +3181,9 @@ class ScatterUpdate(_ScatterOp_Dynamic):
|
|||
|
||||
Using given values to update tensor value, along with the input indices.
|
||||
|
||||
for each `i, ..., j` in `indices.shape`:
|
||||
.. math::
|
||||
\begin{array}{l}
|
||||
\text {for each i, ..., j in indices.shape:} \\
|
||||
input\_x[indices[i, ..., j], :] = updates[i, ..., j, :]
|
||||
\end{array}
|
||||
\text{input_x}[\text{indices}[i, ..., j], :] = \text{updates}[i, ..., j, :]
|
||||
|
||||
Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -3296,11 +3294,10 @@ class ScatterMax(_ScatterOp):
|
|||
Using given values to update tensor value through the max operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
||||
for each `i, ..., j` in `indices.shape`:
|
||||
.. math::
|
||||
\begin{array}{l}
|
||||
\text {for each i, ..., j in indices.shape:} \\
|
||||
input\_x[indices[i, ..., j], :] = max(input\_x[indices[i, ..., j], :], updates[i, ..., j, :])
|
||||
\end{array}
|
||||
\text{input_x}[\text{indices}[i, ..., j], :]
|
||||
= max(\text{input_x}[\text{indices}[i, ..., j], :], \text{updates}[i, ..., j, :])
|
||||
|
||||
Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -3347,11 +3344,10 @@ class ScatterMin(_ScatterOp):
|
|||
Using given values to update tensor value through the min operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
||||
for each `i, ..., j` in `indices.shape`:
|
||||
.. math::
|
||||
\begin{array}{l}
|
||||
\text {for each i, ..., j in indices.shape:} \\
|
||||
input\_x[indices[i, ..., j], :] = min(input\_x[indices[i, ..., j], :], updates[i, ..., j, :])
|
||||
\end{array}
|
||||
\text{input_x}[\text{indices}[i, ..., j], :]
|
||||
= min(\text{input_x}[\text{indices}[i, ..., j], :], \text{updates}[i, ..., j, :])
|
||||
|
||||
Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -3392,11 +3388,9 @@ class ScatterAdd(_ScatterOp_Dynamic):
|
|||
Using given values to update tensor value through the add operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
||||
for each `i, ..., j` in `indices.shape`:
|
||||
.. math::
|
||||
\begin{array}{l}
|
||||
\text {for each i, ..., j in indices.shape:} \\
|
||||
input\_x[indices[i, ..., j], :] \mathrel{+}= updates[i, ..., j, :]
|
||||
\end{array}
|
||||
\text{input_x}[\text{indices}[i, ..., j], :] \mathrel{+}= \text{updates}[i, ..., j, :]
|
||||
|
||||
Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -3443,11 +3437,9 @@ class ScatterSub(_ScatterOp):
|
|||
Using given values to update tensor value through the subtraction operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
||||
for each `i, ..., j` in `indices.shape`:
|
||||
.. math::
|
||||
\begin{array}{l}
|
||||
\text {for each i, ..., j in indices.shape:} \\
|
||||
input\_x[indices[i, ..., j], :] \mathrel{-}= updates[i, ..., j, :]
|
||||
\end{array}
|
||||
\text{input_x}[\text{indices}[i, ..., j], :] \mathrel{-}= \text{updates}[i, ..., j, :]
|
||||
|
||||
Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -3489,11 +3481,9 @@ class ScatterMul(_ScatterOp):
|
|||
Using given values to update tensor value through the mul operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
||||
for each `i, ..., j` in `indices.shape`:
|
||||
.. math::
|
||||
\begin{array}{l}
|
||||
\text {for each i, ..., j in indices.shape:} \\
|
||||
input\_x[indices[i, ..., j], :] \mathrel{*}= updates[i, ..., j, :]
|
||||
\end{array}
|
||||
\text{input_x}[\text{indices}[i, ..., j], :] \mathrel{*}= \text{updates}[i, ..., j, :]
|
||||
|
||||
Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
@ -3534,11 +3524,9 @@ class ScatterDiv(_ScatterOp):
|
|||
Using given values to update tensor value through the div operation, along with the input indices.
|
||||
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
||||
|
||||
for each `i, ..., j` in `indices.shape`:
|
||||
.. math::
|
||||
\begin{array}{l}
|
||||
\text {for each i, ..., j in indices.shape:} \\
|
||||
input\_x[indices[i, ..., j], :] \mathrel{/}= updates[i, ..., j, :]
|
||||
\end{array}
|
||||
\text{input_x}[\text{indices}[i, ..., j], :] \mathrel{/}= \text{updates}[i, ..., j, :]
|
||||
|
||||
Inputs of `input_x` and `updates` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, lower priority data type will be converted to
|
||||
|
|
|
@ -767,9 +767,10 @@ class MatMul(PrimitiveWithCheck):
|
|||
|
||||
class BatchMatMul(MatMul):
|
||||
"""
|
||||
Computes matrix multiplication between two tensors by batch
|
||||
Computes matrix multiplication between two tensors by batch.
|
||||
|
||||
`result[..., :, :] = tensor(a[..., :, :]) * tensor(b[..., :, :])`.
|
||||
.. math::
|
||||
\text{output}[..., :, :] = \text{matrix}(a[..., :, :]) * \text{matrix}(b[..., :, :])
|
||||
|
||||
The two input tensors must have the same rank and the rank must be not less than `3`.
|
||||
|
||||
|
|
Loading…
Reference in New Issue