forked from mindspore-Ecosystem/mindspore
update lstm readme
This commit is contained in:
parent
a8c5dfae3b
commit
c465f2bf5c
|
@ -58,6 +58,16 @@ LSTM contains embeding, encoder and decoder modules. Encoder module consists of
|
|||
bash run_eval_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt
|
||||
```
|
||||
|
||||
- runing on CPU
|
||||
|
||||
```bash
|
||||
# run training example
|
||||
bash run_train_cpu.sh ./aclimdb ./glove_dir
|
||||
|
||||
# run evaluation example
|
||||
bash run_eval_cpu.sh ./aclimdb ./glove_dir lstm-20_390.ckpt
|
||||
```
|
||||
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
||||
|
@ -69,14 +79,16 @@ LSTM contains embeding, encoder and decoder modules. Encoder module consists of
|
|||
├── README.md # descriptions about LSTM
|
||||
├── script
|
||||
│ ├── run_eval_gpu.sh # shell script for evaluation on GPU
|
||||
│ └── run_train_gpu.sh # shell script for training on GPU
|
||||
│ ├── run_eval_cpu.sh # shell script for evaluation on CPU
|
||||
│ ├── run_train_gpu.sh # shell script for training on GPU
|
||||
│ └── run_train_cpu.sh # shell script for training on CPU
|
||||
├── src
|
||||
│ ├── config.py # parameter configuration
|
||||
│ ├── dataset.py # dataset preprocess
|
||||
│ ├── imdb.py # imdb dataset read script
|
||||
│ └── lstm.py # Sentiment model
|
||||
├── eval.py # evaluation script
|
||||
└── train.py # training script
|
||||
├── eval.py # evaluation script on both GPU and CPU
|
||||
└── train.py # training script on both GPU and CPU
|
||||
```
|
||||
|
||||
|
||||
|
@ -154,60 +166,89 @@ config.py:
|
|||
|
||||
- Set options in `config.py`, including learning rate and network hyperparameters.
|
||||
|
||||
- Run `sh run_train_gpu.sh` for training.
|
||||
- runing on GPU
|
||||
|
||||
``` bash
|
||||
bash run_train_gpu.sh 0 ./aclimdb ./glove_dir
|
||||
```
|
||||
Run `sh run_train_gpu.sh` for training.
|
||||
|
||||
The above shell script will run distribute training in the background. You will get the loss value as following:
|
||||
```shell
|
||||
# grep "loss is " log.txt
|
||||
epoch: 1 step: 390, loss is 0.6003723
|
||||
epcoh: 2 step: 390, loss is 0.35312173
|
||||
...
|
||||
```
|
||||
``` bash
|
||||
bash run_train_gpu.sh 0 ./aclimdb ./glove_dir
|
||||
```
|
||||
|
||||
The above shell script will run distribute training in the background. You will get the loss value as following:
|
||||
```shell
|
||||
# grep "loss is " log.txt
|
||||
epoch: 1 step: 390, loss is 0.6003723
|
||||
epcoh: 2 step: 390, loss is 0.35312173
|
||||
...
|
||||
```
|
||||
|
||||
- runing on CPU
|
||||
|
||||
Run `sh run_train_cpu.sh` for training.
|
||||
|
||||
``` bash
|
||||
bash run_train_cpu.sh ./aclimdb ./glove_dir
|
||||
```
|
||||
|
||||
The above shell script will train in the background. You will get the loss value as following:
|
||||
|
||||
```shell
|
||||
# grep "loss is " log.txt
|
||||
epoch: 1 step: 390, loss is 0.6003723
|
||||
epcoh: 2 step: 390, loss is 0.35312173
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
## [Evaluation Process](#contents)
|
||||
|
||||
- Run `bash run_eval_gpu.sh` for evaluation.
|
||||
- evaluation on GPU
|
||||
|
||||
``` bash
|
||||
bash run_eval_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt
|
||||
```
|
||||
Run `bash run_eval_gpu.sh` for evaluation.
|
||||
|
||||
``` bash
|
||||
bash run_eval_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt
|
||||
```
|
||||
|
||||
- evaluation on CPU
|
||||
|
||||
Run `bash run_eval_cpu.sh` for evaluation.
|
||||
|
||||
``` bash
|
||||
bash run_eval_cpu.sh ./aclimdb ./glove_dir lstm-20_390.ckpt
|
||||
```
|
||||
|
||||
# [Model Description](#contents)
|
||||
## [Performance](#contents)
|
||||
|
||||
### Training Performance
|
||||
|
||||
| Parameters | LSTM |
|
||||
| -------------------------- | -------------------------------------------------------------- |
|
||||
| Resource | Tesla V100-SMX2-16GB |
|
||||
| uploaded Date | 08/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta |
|
||||
| Dataset | aclimdb_v1 |
|
||||
| Training Parameters | epoch=20, batch_size=64 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| Speed | 1022 (1pcs) |
|
||||
| Loss | 0.12 |
|
||||
| Params (M) | 6.45 |
|
||||
| Checkpoint for inference | 292.9M (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm |
|
||||
| Parameters | LSTM (GPU) | LSTM (CPU) |
|
||||
| -------------------------- | -------------------------------------------------------------- | -------------------------- |
|
||||
| Resource | Tesla V100-SMX2-16GB | Ubuntu X86-i7-8565U-16GB |
|
||||
| uploaded Date | 08/06/2020 (month/day/year) | 08/06/2020 (month/day/year)|
|
||||
| MindSpore Version | 0.6.0-beta | 0.6.0-beta |
|
||||
| Dataset | aclimdb_v1 | aclimdb_v1 |
|
||||
| Training Parameters | epoch=20, batch_size=64 | epoch=20, batch_size=64 |
|
||||
| Optimizer | Momentum | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
|
||||
| Speed | 1022 (1pcs) | 20 |
|
||||
| Loss | 0.12 | 0.12 |
|
||||
| Params (M) | 6.45 | 6.45 |
|
||||
| Checkpoint for inference | 292.9M (.ckpt file) | 292.9M (.ckpt file) |
|
||||
| Scripts | [lstm script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm) | [lstm script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm) |
|
||||
|
||||
|
||||
### Evaluation Performance
|
||||
|
||||
| Parameters | LSTM |
|
||||
| ------------------- | --------------------------- |
|
||||
| Resource | Tesla V100-SMX2-16GB |
|
||||
| uploaded Date | 08/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta |
|
||||
| Dataset | aclimdb_v1 |
|
||||
| batch_size | 64 |
|
||||
| Accuracy | 84% |
|
||||
| Parameters | LSTM (GPU) | LSTM (CPU) |
|
||||
| ------------------- | --------------------------- | ---------------------------- |
|
||||
| Resource | Tesla V100-SMX2-16GB | Ubuntu X86-i7-8565U-16GB |
|
||||
| uploaded Date | 08/06/2020 (month/day/year) | 08/06/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta | 0.6.0-beta |
|
||||
| Dataset | aclimdb_v1 | aclimdb_v1 |
|
||||
| batch_size | 64 | 64 |
|
||||
| Accuracy | 84% | 83% |
|
||||
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the scipt as: "
|
||||
echo "bash run_eval_cpu.sh ACLIMDB_DIR GLOVE_DIR CKPT_FILE"
|
||||
echo "for example: bash run_eval_cpu.sh ./aclimdb ./glove_dir lstm-20_390.ckpt"
|
||||
echo "=============================================================================================================="
|
||||
|
||||
ACLIMDB_DIR=$1
|
||||
GLOVE_DIR=$2
|
||||
CKPT_FILE=$3
|
||||
|
||||
mkdir -p ms_log
|
||||
CUR_DIR=`pwd`
|
||||
export GLOG_log_dir=${CUR_DIR}/ms_log
|
||||
export GLOG_logtostderr=0
|
||||
python eval.py \
|
||||
--device_target="CPU" \
|
||||
--aclimdb_path=$ACLIMDB_DIR \
|
||||
--glove_path=$GLOVE_DIR \
|
||||
--preprocess=false \
|
||||
--preprocess_path=./preprocess \
|
||||
--ckpt_path=$CKPT_FILE > log.txt 2>&1 &
|
|
@ -0,0 +1,35 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the scipt as: "
|
||||
echo "bash run_train_cpu.sh ACLIMDB_DIR GLOVE_DIR"
|
||||
echo "for example: bash run_train_gpu.sh ./aclimdb ./glove_dir"
|
||||
echo "=============================================================================================================="
|
||||
|
||||
ACLIMDB_DIR=$1
|
||||
GLOVE_DIR=$2
|
||||
|
||||
mkdir -p ms_log
|
||||
CUR_DIR=`pwd`
|
||||
export GLOG_log_dir=${CUR_DIR}/ms_log
|
||||
export GLOG_logtostderr=0
|
||||
python train.py \
|
||||
--device_target="CPU" \
|
||||
--aclimdb_path=$ACLIMDB_DIR \
|
||||
--glove_path=$GLOVE_DIR \
|
||||
--preprocess=true \
|
||||
--preprocess_path=./preprocess > log.txt 2>&1 &
|
Loading…
Reference in New Issue