forked from mindspore-Ecosystem/mindspore
!3473 [refine]change base class of parameter
Merge pull request !3473 from vlne-v1/change_base_class_of_parameter
This commit is contained in:
commit
be507b96e0
|
@ -21,12 +21,12 @@ from .parser import (Parser, create_obj_instance, generate_scope,
|
|||
get_class_member_namespace_symbol, create_slice_obj,
|
||||
get_dataclass_attributes, get_dataclass_methods, get_obj_id,
|
||||
get_module_namespace, get_obj_type, get_object_key,
|
||||
get_default_input, get_parse_method_of_class, get_scope_name,
|
||||
get_parse_method_of_class, get_scope_name,
|
||||
is_class_member, parse_cb, resolve_symbol)
|
||||
from .serialize import *
|
||||
|
||||
__all__ = ['parse_cb', 'get_parse_method_of_class', 'get_bprop_method_of_class', 'resolve_symbol',
|
||||
'get_object_key', 'get_default_input', 'get_class_instance_type', 'is_class_member',
|
||||
'get_object_key', 'get_class_instance_type', 'is_class_member',
|
||||
'get_obj_type', 'get_obj_id', 'create_obj_instance', 'get_module_namespace',
|
||||
'get_class_member_namespace_symbol', 'get_obj_id', 'Parser', 'get_dataclass_attributes',
|
||||
'get_dataclass_methods', 'dump_obj', 'load_obj', 'get_dataclass_methods', 'get_scope_name',
|
||||
|
|
|
@ -206,16 +206,6 @@ def get_object_key(obj):
|
|||
return obj_id, obj_key
|
||||
|
||||
|
||||
def get_default_input(obj):
|
||||
if hasattr(obj, '__parameter__'):
|
||||
return obj.default_input
|
||||
if isinstance(obj, tuple):
|
||||
convert = lambda x: x.default_input if hasattr(x, '__parameter__') else x
|
||||
args = tuple(convert(x) for x in obj)
|
||||
return args
|
||||
return obj
|
||||
|
||||
|
||||
def is_class_member(node):
|
||||
"""Check the attr is class member variable."""
|
||||
type_ = node.__class__.__name__
|
||||
|
|
|
@ -76,7 +76,7 @@ GraphId AscendInferenceSession::CompileGraph(NotNull<FuncGraphPtr> func_graph) {
|
|||
if (AnfAlgo::IsParameterWeight(pk_node)) {
|
||||
const auto ¶m_value = pk_node->default_param();
|
||||
MS_EXCEPTION_IF_NULL(param_value);
|
||||
auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_value->value());
|
||||
auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_value);
|
||||
MS_EXCEPTION_IF_NULL(tensor);
|
||||
if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
|
||||
LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
|
|
|
@ -42,12 +42,12 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace session {
|
||||
static std::shared_ptr<std::map<ParamValuePtr, ParameterPtr>> python_paras;
|
||||
static std::shared_ptr<std::map<ValuePtr, ParameterPtr>> python_paras;
|
||||
void ClearPythonParasMap() { python_paras = nullptr; }
|
||||
namespace {
|
||||
const int kSummaryGetItem = 2;
|
||||
|
||||
ParamValuePtr GetParamDefaultValue(const AnfNodePtr &node) {
|
||||
ValuePtr GetParamDefaultValue(const AnfNodePtr &node) {
|
||||
if (node == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -212,8 +212,7 @@ ParameterPtr ConstructRunOpParameter(const std::shared_ptr<KernelGraph> &graph,
|
|||
auto param = graph->NewParameter();
|
||||
MS_EXCEPTION_IF_NULL(param);
|
||||
if (tensor_mask == kParameterWeightTensorMask) {
|
||||
auto param_value_new = std::make_shared<ParamValue>();
|
||||
param->set_default_param(param_value_new);
|
||||
param->set_default_param(input_tensor);
|
||||
}
|
||||
// set the kernel info of parameter
|
||||
auto kernel_build_info_builder = std::make_shared<kernel::KernelBuildInfo::KernelBuildInfoBuilder>();
|
||||
|
@ -393,7 +392,7 @@ ParameterPtr SessionBasic::CreateNewParameterFromParameter(const AnfNodePtr &anf
|
|||
ParameterPtr new_parameter = nullptr;
|
||||
// if parameter's python parameter has been exist a backend parameter, reuse the exist parameter
|
||||
if (python_paras == nullptr) {
|
||||
python_paras = std::make_shared<std::map<ParamValuePtr, ParameterPtr>>();
|
||||
python_paras = std::make_shared<std::map<ValuePtr, ParameterPtr>>();
|
||||
}
|
||||
auto iter = python_paras->find(param_value);
|
||||
if (iter != python_paras->end()) {
|
||||
|
@ -670,7 +669,7 @@ ParameterPtr SessionBasic::CreateNewParameter(const AnfNodePtr &anf, KernelGraph
|
|||
auto param_value = GetParamDefaultValue(anf);
|
||||
ParameterPtr new_parameter = nullptr;
|
||||
if (python_paras == nullptr) {
|
||||
python_paras = std::make_shared<std::map<ParamValuePtr, ParameterPtr>>();
|
||||
python_paras = std::make_shared<std::map<ValuePtr, ParameterPtr>>();
|
||||
}
|
||||
auto iter = python_paras->find(param_value);
|
||||
if (iter != python_paras->end()) {
|
||||
|
|
|
@ -1670,7 +1670,7 @@ class IrParser {
|
|||
|
||||
// load parameter default value from serialized file
|
||||
py::object default_obj = LoadObject(lexer_.GetTokenText());
|
||||
auto param_value_new = py::cast<ParamValuePtr>(default_obj);
|
||||
auto param_value_new = py::cast<tensor::TensorPtr>(default_obj);
|
||||
param->set_default_param(param_value_new);
|
||||
|
||||
tok = lexer_.GetNextToken();
|
||||
|
|
|
@ -318,8 +318,9 @@ void BaseDigraph::FuncGraphParameters(const FuncGraphPtr &key) {
|
|||
buffer_ << parameter->ToString();
|
||||
auto param = parameter->cast<ParameterPtr>();
|
||||
if (param->has_default()) {
|
||||
auto tensor = param->default_param()->value();
|
||||
if (tensor) {
|
||||
auto tensor_v = param->default_param();
|
||||
if (tensor_v && tensor_v->isa<tensor::Tensor>()) {
|
||||
auto tensor = tensor_v->cast<tensor::TensorPtr>();
|
||||
auto &shape = tensor->shape();
|
||||
std::ostringstream shape_str;
|
||||
std::copy(shape.begin(), shape.end(), std::ostream_iterator<int>(shape_str, ","));
|
||||
|
|
|
@ -38,7 +38,12 @@ bool ParameterRequireGrad(const AnfNodePtr &node_ptr) {
|
|||
if (!para_ptr->has_default()) {
|
||||
return false;
|
||||
}
|
||||
return para_ptr->default_param()->requires_grad();
|
||||
auto obj = py::cast(para_ptr->default_param());
|
||||
auto param_value = py::cast<ParamValuePtr>(obj.attr("_value"));
|
||||
if (param_value == nullptr) {
|
||||
return false;
|
||||
}
|
||||
return param_value->requires_grad();
|
||||
}
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -41,6 +41,7 @@
|
|||
#include "frontend/parallel/context.h"
|
||||
#include "frontend/parallel/ops_info/tmp_identity_info.h"
|
||||
#include "frontend/parallel/ops_info/reshape_info.h"
|
||||
#include "frontend/parallel/graph_util/node_info.h"
|
||||
#include "frontend/parallel/step_parallel.h"
|
||||
#include "frontend/parallel/strategy_checkpoint/parallel_strategy_checkpoint.h"
|
||||
#include "pipeline/jit/parse/python_adapter.h"
|
||||
|
@ -122,12 +123,7 @@ std::vector<bool> ExtractInputParameterByNode(const CNodePtr &node) {
|
|||
|
||||
if (input->isa<Parameter>()) {
|
||||
auto input_parameter = input->cast<ParameterPtr>();
|
||||
if (input_parameter->has_default()) {
|
||||
bool requires_grad = input_parameter->default_param()->requires_grad();
|
||||
is_parameter.push_back(requires_grad);
|
||||
} else {
|
||||
is_parameter.push_back(false);
|
||||
}
|
||||
is_parameter.push_back(ParameterRequireGrad(input_parameter));
|
||||
} else if (input->isa<CNode>() || IsValueNode<tensor::Tensor>(input) || IsValueNode<RefKey>(input)) {
|
||||
is_parameter.push_back(false);
|
||||
}
|
||||
|
@ -798,12 +794,7 @@ void AugmentCostGraph(const std::vector<AnfNodePtr> &all_nodes) {
|
|||
std::vector<bool> is_parameter;
|
||||
auto casted_target_parameter = target_parameter->cast<ParameterPtr>();
|
||||
MS_EXCEPTION_IF_NULL(casted_target_parameter);
|
||||
if (casted_target_parameter->has_default()) {
|
||||
bool requires_grad = casted_target_parameter->default_param()->requires_grad();
|
||||
is_parameter.push_back(requires_grad);
|
||||
} else {
|
||||
is_parameter.push_back(false);
|
||||
}
|
||||
is_parameter.push_back(ParameterRequireGrad(casted_target_parameter));
|
||||
if (tmp_identity_ptr->set_is_parameter(is_parameter) != SUCCESS) {
|
||||
MS_LOG(EXCEPTION) << "Setting parameter for TmpIdentityInfo failed";
|
||||
}
|
||||
|
|
|
@ -1295,11 +1295,8 @@ void CoverSliceShape(const FuncGraphPtr &root) {
|
|||
g_RefMap.clear();
|
||||
}
|
||||
|
||||
bool ParameterIsCloned(const FuncGraphPtr &root, const AnfNodePtr ¶meter_node) {
|
||||
MS_EXCEPTION_IF_NULL(root);
|
||||
bool ParameterIsCloned(const AnfNodePtr ¶meter_node) {
|
||||
MS_EXCEPTION_IF_NULL(parameter_node);
|
||||
FuncGraphManagerPtr manager = root->manager();
|
||||
MS_EXCEPTION_IF_NULL(manager);
|
||||
auto cloned_parameter = parameter_node->cast<ParameterPtr>();
|
||||
MS_EXCEPTION_IF_NULL(cloned_parameter);
|
||||
|
||||
|
@ -1307,8 +1304,12 @@ bool ParameterIsCloned(const FuncGraphPtr &root, const AnfNodePtr ¶meter_nod
|
|||
if (!cloned_parameter->has_default()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool cloned = cloned_parameter->default_param()->cloned();
|
||||
auto obj = py::cast(cloned_parameter->default_param());
|
||||
auto param_value = py::cast<ParamValuePtr>(obj.attr("_value"));
|
||||
if (param_value == nullptr) {
|
||||
return false;
|
||||
}
|
||||
bool cloned = param_value->cloned();
|
||||
if (!cloned) {
|
||||
return false;
|
||||
}
|
||||
|
@ -1324,12 +1325,16 @@ void SetClonedTensorShapeForOptimizer(const FuncGraphPtr &root) {
|
|||
auto cloned_parameter = cloned_parameter_node->cast<ParameterPtr>();
|
||||
MS_EXCEPTION_IF_NULL(cloned_parameter);
|
||||
|
||||
if (!ParameterIsCloned(root, cloned_parameter_node)) {
|
||||
if (!ParameterIsCloned(cloned_parameter_node)) {
|
||||
continue;
|
||||
}
|
||||
auto obj = py::cast(cloned_parameter->default_param());
|
||||
auto param_value = py::cast<ParamValuePtr>(obj.attr("_value"));
|
||||
if (param_value == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// get the cloned index
|
||||
int32_t cloned_index = cloned_parameter->default_param()->cloned_index();
|
||||
int32_t cloned_index = param_value->cloned_index();
|
||||
|
||||
// find the be cloned parameter
|
||||
bool found_be_cloned_parameter = false;
|
||||
|
@ -1344,12 +1349,18 @@ void SetClonedTensorShapeForOptimizer(const FuncGraphPtr &root) {
|
|||
}
|
||||
|
||||
const auto ¶m_value_cloned = be_cloned_parameter->default_param();
|
||||
if (!param_value_cloned->be_cloned()) {
|
||||
|
||||
auto obj_in = py::cast(param_value_cloned);
|
||||
auto param_value_in = py::cast<ParamValuePtr>(obj_in.attr("_value"));
|
||||
if (param_value_in == nullptr) {
|
||||
continue;
|
||||
}
|
||||
if (!param_value_in->be_cloned()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// get the be cloned index
|
||||
auto &be_cloned_index = param_value_cloned->be_cloned_index();
|
||||
auto &be_cloned_index = param_value_in->be_cloned_index();
|
||||
if (std::find(be_cloned_index.begin(), be_cloned_index.end(), cloned_index) != be_cloned_index.end()) {
|
||||
found_be_cloned_parameter = true;
|
||||
cloned_from_parameter = be_cloned_parameter;
|
||||
|
@ -2103,10 +2114,7 @@ std::string NodeParameterName(const CNodePtr &node) {
|
|||
if (input->isa<Parameter>()) {
|
||||
auto input_parameter = input->cast<ParameterPtr>();
|
||||
if (input_parameter->has_default()) {
|
||||
const auto ¶m_value = input_parameter->default_param();
|
||||
if (param_value->requires_grad()) {
|
||||
return param_value->name();
|
||||
}
|
||||
input_parameter->name();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -233,8 +233,7 @@ bool AbstractSpecializeAction(const ResourcePtr &res) {
|
|||
for (const auto ¶m : func_graph->parameters()) {
|
||||
auto param_node = std::static_pointer_cast<Parameter>(param);
|
||||
if (param_node->has_default()) {
|
||||
const auto ¶m_value = param_node->default_param();
|
||||
ValuePtr value = param_value->value();
|
||||
ValuePtr value = param_node->default_param();
|
||||
constexpr bool broaden = true;
|
||||
AbstractBasePtr ptr = abstract::FromValue(value, broaden);
|
||||
|
||||
|
|
|
@ -68,6 +68,8 @@ PYBIND11_MODULE(_c_expression, m) {
|
|||
py::arg("type") = py::str("onnx_ir"), "Get graph proto string by specifying ir type.")
|
||||
.def("compile", &ExecutorPy::Compile, py::arg("obj"), py::arg("args"), py::arg("phase") = py::str(""),
|
||||
py::arg("use_vm") = py::bool_(false), "Compile obj by executor.")
|
||||
.def("updata_param_node_default_input", &ExecutorPy::UpdataParamNodeDefaultInput, py::arg("phase"),
|
||||
py::arg("params"), "Fetch the inputs of Conv or Matmul for quant export.")
|
||||
.def("get_parameter_layout", &ExecutorPy::GetParameterLayout, py::arg("phase") = py::str("train"),
|
||||
"Get Parameter Tensor Layout Dictionary.")
|
||||
.def("get_strategy", &ExecutorPy::GetCNodeStrategy, py::arg("phase") = py::str("train"),
|
||||
|
|
|
@ -205,41 +205,6 @@ bool ConvertMetaFuncGraph(const py::object &obj, ValuePtr *const data, bool use_
|
|||
return true;
|
||||
}
|
||||
|
||||
bool ConvertDataType(const py::object &obj, ValuePtr *const data) {
|
||||
MS_LOG(DEBUG) << "Converting type object";
|
||||
auto typeptr = obj.cast<TypePtr>();
|
||||
if (typeptr == nullptr) {
|
||||
MS_LOG(ERROR) << "Resolve TypePtr error, get ptr is null";
|
||||
return false;
|
||||
}
|
||||
*data = typeptr;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ConvertMetaTensor(const py::object &obj, ValuePtr *const data) {
|
||||
MS_LOG(DEBUG) << "Converting MetaTensor object.";
|
||||
|
||||
auto m_tensor = obj.cast<MetaTensorPtr>();
|
||||
if (m_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "Resolve MetaTensor error, get ptr is null.";
|
||||
return false;
|
||||
}
|
||||
*data = m_tensor;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ConvertTensor(const py::object &obj, ValuePtr *const data) {
|
||||
MS_LOG(DEBUG) << "Converting tensor object";
|
||||
|
||||
auto m_tensor = obj.cast<TensorPtr>();
|
||||
if (m_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "Resolve Tensor error, get ptr is null";
|
||||
return false;
|
||||
}
|
||||
*data = m_tensor;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ConvertSlice(const py::object &obj, ValuePtr *const data) {
|
||||
MS_LOG(DEBUG) << "Converting slice object";
|
||||
|
||||
|
@ -364,11 +329,11 @@ bool ConvertData(const py::object &obj, ValuePtr *const data, bool use_signature
|
|||
} else if (py::isinstance<MetaFuncGraph>(obj)) {
|
||||
ret = ConvertMetaFuncGraph(obj, &converted, use_signature);
|
||||
} else if (py::isinstance<Type>(obj)) {
|
||||
ret = ConvertDataType(obj, &converted);
|
||||
converted = obj.cast<TypePtr>();
|
||||
} else if (py::isinstance<Tensor>(obj)) {
|
||||
ret = ConvertTensor(obj, &converted);
|
||||
converted = obj.cast<TensorPtr>();
|
||||
} else if (py::isinstance<MetaTensor>(obj)) {
|
||||
ret = ConvertMetaTensor(obj, &converted);
|
||||
converted = obj.cast<MetaTensorPtr>();
|
||||
} else if (py::isinstance<EnvInstance>(obj)) {
|
||||
std::shared_ptr<EnvInstance> env = obj.cast<std::shared_ptr<EnvInstance>>();
|
||||
converted = env;
|
||||
|
|
|
@ -85,7 +85,6 @@ const char PYTHON_PARSE_ANALYZE_SUPER[] = "analyze_super";
|
|||
|
||||
const char PYTHON_PARSE_CLASS_SLICE[] = "create_slice_obj";
|
||||
const char PYTHON_PARSE_CLASS_ELLIPSIS[] = "create_ellipsis_obj";
|
||||
const char PYTHON_MOD_GET_DEFAULT_INPUT[] = "get_default_input";
|
||||
|
||||
// define the common name
|
||||
const char NAMED_PRIMITIVE_LEN[] = "len";
|
||||
|
|
|
@ -103,10 +103,9 @@ AnfNodePtr ResolveParameterObj(const FuncGraphPtr &func_graph, const py::object
|
|||
}
|
||||
if (para_node == nullptr) {
|
||||
auto node = top_graph->AddWeightParameter(param_name);
|
||||
auto param_value = py::cast<ParamValuePtr>(python_adapter::GetPyObjAttr(obj, "_value"));
|
||||
node->set_default_param(param_value);
|
||||
auto value = py::cast<tensor::MetaTensorPtr>(obj);
|
||||
node->set_default_param(value);
|
||||
// set_abstract for parameter
|
||||
ValuePtr value = param_value->value();
|
||||
constexpr bool broaden = true;
|
||||
node->set_abstract(abstract::FromValue(value, broaden));
|
||||
para_node = node;
|
||||
|
|
|
@ -719,7 +719,11 @@ void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef
|
|||
if (!param_ptr->has_default()) {
|
||||
MS_LOG(EXCEPTION) << "Parameter[" << i << "] has no default param";
|
||||
}
|
||||
arg_list->push_back(param_ptr->default_param()->value());
|
||||
if (!param_ptr->default_param()->isa<Tensor>()) {
|
||||
MS_LOG(EXCEPTION) << "Parameter[" << param_ptr->ToString()
|
||||
<< "] is not initialized, need to call `.init_data()`";
|
||||
}
|
||||
arg_list->push_back(param_ptr->default_param());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -782,6 +786,24 @@ FuncGraphPtr ExecutorPy::BuildGraph(const py::dict &init_params, const std::stri
|
|||
#endif
|
||||
}
|
||||
|
||||
void ExecutorPy::UpdataParamNodeDefaultInput(const std::string &phase,
|
||||
const std::unordered_map<std::string, tensor::TensorPtr> ¶ms_value) {
|
||||
FuncGraphPtr func_graph = info_[phase]->resource->func_graph();
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
MS_LOG(DEBUG) << "UpdataParamNodeDefaultInput for func graph(" << func_graph->ToString() << ") phase(" << phase
|
||||
<< ")!";
|
||||
auto ¶ms = func_graph->parameters();
|
||||
for (const auto ¶m : params) {
|
||||
MS_EXCEPTION_IF_NULL(param);
|
||||
auto param_cast = param->cast<ParameterPtr>();
|
||||
MS_EXCEPTION_IF_NULL(param_cast);
|
||||
auto iter = params_value.find(param_cast->name());
|
||||
if (iter != params_value.end()) {
|
||||
param_cast->set_default_param(iter->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ExecutorPy::RunInitGraph(const py::dict &init_params, const std::string &phase) {
|
||||
#if ENABLE_GE
|
||||
RunGEInitGraph(init_params, phase);
|
||||
|
|
|
@ -88,6 +88,8 @@ class ExecutorPy : public std::enable_shared_from_this<ExecutorPy> {
|
|||
|
||||
FuncGraphPtr BuildGraph(const py::dict &init_params, const std::string &phase,
|
||||
const py::object &broadcast_params = {});
|
||||
void UpdataParamNodeDefaultInput(const std::string &phase,
|
||||
const std::unordered_map<std::string, tensor::TensorPtr> ¶ms);
|
||||
void RunInitGraph(const py::dict &init_params, const std::string &phase);
|
||||
py::dict GetParameterLayout(const std::string &phase);
|
||||
py::dict GetCNodeStrategy(const std::string &phase);
|
||||
|
|
|
@ -146,12 +146,6 @@ static std::string GetOpId(const OpExecInfoPtr &op_exec_info) {
|
|||
return id;
|
||||
}
|
||||
|
||||
py::object GetTupleObj(const py::object &obj) {
|
||||
py::module mod = parse::python_adapter::GetPyModule(parse::PYTHON_MOD_PARSE_MODULE);
|
||||
py::object obj_tuple = parse::python_adapter::CallPyModFn(mod, parse::PYTHON_MOD_GET_DEFAULT_INPUT, obj);
|
||||
return obj_tuple;
|
||||
}
|
||||
|
||||
std::map<SignatureEnumDType, std::vector<size_t>> GetTypeIndex(const std::vector<SignatureEnumDType> &dtypes) {
|
||||
std::map<SignatureEnumDType, std::vector<size_t>> type_indexes;
|
||||
for (size_t i = 0; i < dtypes.size(); ++i) {
|
||||
|
@ -242,7 +236,7 @@ py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tu
|
|||
py::tuple input_mask(args.size());
|
||||
for (size_t i = 0; i < args.size(); ++i) {
|
||||
input_mask[i] = py::hasattr(args[i], "__parameter__");
|
||||
py_args[i] = GetTupleObj(args[i]);
|
||||
py_args[i] = args[i];
|
||||
}
|
||||
auto signature = prim->signatures();
|
||||
std::vector<SignatureEnumDType> dtypes;
|
||||
|
@ -366,9 +360,6 @@ py::object RunOpInVM(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *stat
|
|||
py::tuple result(op_inputs.size());
|
||||
for (size_t i = 0; i < op_inputs.size(); i++) {
|
||||
py::object input = op_inputs[i];
|
||||
if (py::hasattr(input, "__parameter__")) {
|
||||
input = py::getattr(input, "data");
|
||||
}
|
||||
auto tensor = py::cast<tensor::TensorPtr>(input);
|
||||
auto new_tensor = std::make_shared<tensor::Tensor>(tensor->data_type(), tensor->shape(), tensor->data_ptr());
|
||||
new_tensor->set_device_address(tensor->device_address());
|
||||
|
@ -878,8 +869,7 @@ AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &o
|
|||
if (graph_info_map_[df_builder_].param_map.count(obj_id) == 0) {
|
||||
auto free_param = df_builder_->add_parameter();
|
||||
free_param->set_name(param_name);
|
||||
auto free_param_new = py::cast<ParamValuePtr>(obj.attr("_value"));
|
||||
free_param->set_default_param(free_param_new);
|
||||
free_param->set_default_param(py::cast<tensor::TensorPtr>(obj));
|
||||
free_param->debug_info()->set_name(param_name);
|
||||
MS_LOG(DEBUG) << "Top graph set free parameter " << obj_id;
|
||||
graph_info_map_[df_builder_].param_map[obj_id] = free_param;
|
||||
|
@ -1074,8 +1064,7 @@ abstract::AbstractBasePtrList PynativeExecutor::GetArgsSpec(const py::args &args
|
|||
for (const auto ¶m : df_builder_->parameters()) {
|
||||
auto param_node = std::static_pointer_cast<Parameter>(param);
|
||||
if (param_node->has_default()) {
|
||||
const auto ¶m_value = param_node->default_param();
|
||||
ValuePtr value = param_value->value();
|
||||
ValuePtr value = param_node->default_param();
|
||||
AbstractBasePtr ptr = abstract::FromValue(value, true);
|
||||
if (ptr == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "Args convert error";
|
||||
|
|
|
@ -187,7 +187,7 @@ void IrExportBuilder::BuildParameters(const FuncGraphPtr &func_graph, onnx::Grap
|
|||
onnx::TensorProto *initializer_proto = graph_proto->add_initializer();
|
||||
initializer_proto->set_name(param_name);
|
||||
SetParamToTensorProto(param, initializer_proto);
|
||||
auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param->default_param()->value());
|
||||
auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param->default_param());
|
||||
if (tensor) {
|
||||
initializer_proto->set_raw_data(tensor->data_c(), tensor->data().nbytes());
|
||||
}
|
||||
|
|
|
@ -449,7 +449,7 @@ void OnnxExporter::ExportParameters(const FuncGraphPtr &func_graph, onnx::GraphP
|
|||
initializer_proto->set_name(param_ptr->ToString());
|
||||
SetTensorProtoInfo(param_ptr, initializer_proto);
|
||||
// set value for initializer
|
||||
auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_ptr->default_param()->value());
|
||||
auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_ptr->default_param());
|
||||
if (tensor) {
|
||||
initializer_proto->set_raw_data(tensor->data_c(), tensor->data().nbytes());
|
||||
}
|
||||
|
|
|
@ -52,7 +52,7 @@ bool GetParameterShape(const FuncGraphPtr &graph, const std::string ¶m_name,
|
|||
if (param_node->name() == param_name) {
|
||||
TensorPtr tensor;
|
||||
if (param_node->has_default()) {
|
||||
tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_node->default_param()->value());
|
||||
tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_node->default_param());
|
||||
}
|
||||
if (tensor == nullptr) {
|
||||
shape->push_back(ONE_SHAPE);
|
||||
|
|
|
@ -448,7 +448,7 @@ bool IsGraphOutputValueNodeOrParameter(const AnfNodePtr &output, const py::tuple
|
|||
if (!param->has_default()) {
|
||||
MS_LOG(EXCEPTION) << "Can not determine value of Parameter " << index << " (" << param->name() << ")";
|
||||
}
|
||||
auto tensor = param->default_param()->value();
|
||||
auto tensor = param->default_param();
|
||||
*ret_val = py::cast(tensor);
|
||||
}
|
||||
return true;
|
||||
|
|
|
@ -124,10 +124,7 @@ bool MSANFModelParser::BuildParameterForFuncGraph(const ParameterPtr &node, cons
|
|||
MS_LOG(EXCEPTION) << "memcpy_s error, errorno" << ret;
|
||||
}
|
||||
|
||||
auto param_value = std::make_shared<ParamValue>();
|
||||
MS_EXCEPTION_IF_NULL(param_value);
|
||||
param_value->set_value(tensor_info);
|
||||
node->set_default_param(param_value);
|
||||
node->set_default_param(tensor_info);
|
||||
}
|
||||
anfnode_build_map_[value_proto.name()] = node;
|
||||
return true;
|
||||
|
|
|
@ -24,22 +24,19 @@ REGISTER_PYBIND_DEFINE(ParamValue, ([](const py::module *m) {
|
|||
(void)py::class_<ParamValue, ParamValuePtr>(*m, "ParamValue")
|
||||
.def(py::init())
|
||||
.def("clone", &ParamValue::Clone)
|
||||
.def_property("data", &ParamValue::value, &ParamValue::set_value)
|
||||
.def_property("name", &ParamValue::name, &ParamValue::set_name)
|
||||
.def_property("requires_grad", &ParamValue::requires_grad, &ParamValue::set_requires_grad)
|
||||
.def_property("layerwise_parallel", &ParamValue::layerwise_parallel,
|
||||
&ParamValue::set_layerwise_parallel)
|
||||
.def(py::pickle(
|
||||
[](const ParamValue &p) { // __getstate__
|
||||
return py::make_tuple(py::cast(p.value()), p.name(), p.requires_grad(),
|
||||
p.layerwise_parallel());
|
||||
return py::make_tuple(p.name(), p.requires_grad(), p.layerwise_parallel());
|
||||
},
|
||||
[](const py::tuple &t) { // __setstate__
|
||||
if (t.size() != 6) {
|
||||
std::runtime_error("Invalid state for ParamValue!");
|
||||
}
|
||||
ParamValuePtr p = std::make_shared<ParamValue>();
|
||||
p->set_value(t[0].cast<tensor::TensorPtr>());
|
||||
p->set_name(t[1].cast<std::string>());
|
||||
p->set_requires_grad(t[2].cast<bool>());
|
||||
p->set_layerwise_parallel(t[3].cast<bool>());
|
||||
|
|
|
@ -372,7 +372,7 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
|
|||
.def(py::pickle(
|
||||
[](const Tensor &t) { // __getstate__
|
||||
/* Return a tuple that fully encodes the state of the object */
|
||||
return py::make_tuple(TensorPy::AsNumpy(t));
|
||||
return py::make_tuple(TensorPy::SyncAsNumpy(t));
|
||||
},
|
||||
[](const py::tuple &t) { // __setstate__
|
||||
if (t.size() != 1) {
|
||||
|
|
|
@ -255,7 +255,6 @@ def ms_function(fn=None, obj=None, input_signature=None):
|
|||
process_obj = obj
|
||||
if args and not isinstance(args[0], MsTensor) and hasattr(args[0], func.__name__):
|
||||
process_obj = args[0]
|
||||
args = (x.default_input if hasattr(x, 'default_input') else x for x in args)
|
||||
return _MindSporeFunction(func, input_signature, process_obj)(*args)
|
||||
|
||||
return staging_specialize
|
||||
|
@ -354,28 +353,8 @@ class _Executor:
|
|||
raise RuntimeError("Failure to init and dataset subgraph!")
|
||||
return True
|
||||
|
||||
def _build_data_graph(self, obj, params, phase):
|
||||
if params is None:
|
||||
self._executor.build_data_graph(obj.parameters_dict(), phase, obj.parameters_broadcast_dict())
|
||||
elif isinstance(params, OrderedDict):
|
||||
self._executor.build_data_graph(params, phase)
|
||||
else:
|
||||
raise TypeError('Parameters need OrderedDict type, but got {}'.
|
||||
format(type(params)))
|
||||
|
||||
def _params_init_data(self, obj, params, auto_parallel_mode=False):
|
||||
"""Init parameters' data."""
|
||||
if params is not None:
|
||||
for key, param in params.items():
|
||||
if not auto_parallel_mode:
|
||||
param.init_data()
|
||||
elif key not in obj.parameter_layout_dict:
|
||||
logger.debug("Layout dict does not contain the key %s.", key)
|
||||
param.init_data(set_sliced=True)
|
||||
else:
|
||||
layout = obj.parameter_layout_dict[key]
|
||||
param.init_data(layout, set_sliced=True)
|
||||
obj.init_parameters_data(auto_parallel_mode=auto_parallel_mode)
|
||||
def _build_data_graph(self, obj, phase):
|
||||
self._executor.build_data_graph(obj.parameters_dict(), phase, obj.parameters_broadcast_dict())
|
||||
|
||||
def _set_dataset_mode(self, args_list):
|
||||
"""set dataset mode."""
|
||||
|
@ -386,7 +365,7 @@ class _Executor:
|
|||
else:
|
||||
_set_dataset_mode_config('normal')
|
||||
|
||||
def compile(self, obj, *args, phase='predict', params=None, do_convert=True, auto_parallel_mode=False):
|
||||
def compile(self, obj, *args, phase='predict', do_convert=True, auto_parallel_mode=False):
|
||||
"""
|
||||
Compiles graph.
|
||||
|
||||
|
@ -394,7 +373,6 @@ class _Executor:
|
|||
obj (Function/Cell): The function or cell instance need compile.
|
||||
args (tuple): Function or cell input arguments.
|
||||
phase (str): The name of compile phase. Default: 'predict'.
|
||||
params (OrderedDict): The parameters dictionary used for init data graph. Default: None.
|
||||
do_convert (bool): When set to True, convert ME graph to GE graph after compiling graph.
|
||||
auto_parallel_mode: When set to True, use auto parallel mode to compile graph.
|
||||
|
||||
|
@ -435,10 +413,8 @@ class _Executor:
|
|||
|
||||
if auto_parallel_mode:
|
||||
obj.parameter_layout_dict = self._executor.get_parameter_layout(phase)
|
||||
self._params_init_data(obj, params, auto_parallel_mode)
|
||||
if not enable_debug_runtime or enable_ge:
|
||||
if auto_parallel_mode:
|
||||
obj.load_parameter_slice(params)
|
||||
replace = obj.init_parameters_data(auto_parallel_mode=auto_parallel_mode)
|
||||
self._updata_param_node_default_input(phase, replace)
|
||||
|
||||
# set parallel inputs in sink mode
|
||||
if auto_parallel_mode and (args and isinstance(args[0], Tensor) and args[0].virtual_flag):
|
||||
|
@ -446,16 +422,20 @@ class _Executor:
|
|||
|
||||
# the following GE init process is not needed when use vm or ms backend
|
||||
if enable_ge:
|
||||
self._build_data_graph(obj, params, phase)
|
||||
self._build_data_graph(obj, phase)
|
||||
|
||||
if "export" not in phase:
|
||||
init_phase = "init_subgraph" + "." + str(obj.create_time)
|
||||
_exec_init_graph(obj, init_phase)
|
||||
elif not enable_ge and "export" in phase:
|
||||
self._build_data_graph(obj, params, phase)
|
||||
self._build_data_graph(obj, phase)
|
||||
|
||||
return phase, True
|
||||
|
||||
def _updata_param_node_default_input(self, phase, replace):
|
||||
new_param = {x.name: replace[x] for x in replace if id(x) != id(replace[x])}
|
||||
return self._executor.updata_param_node_default_input(phase, new_param)
|
||||
|
||||
def _get_strategy(self, obj):
|
||||
real_phase = self.phase_prefix + obj.phase + '.' + str(obj.create_time)
|
||||
return self._executor.get_strategy(real_phase)
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
|
||||
"""Parameter for cell."""
|
||||
import numbers
|
||||
from copy import copy
|
||||
from mindspore import context
|
||||
from .._c_expression import ParamValue
|
||||
|
@ -37,10 +36,17 @@ def _check_type(x):
|
|||
return True
|
||||
|
||||
|
||||
class Parameter:
|
||||
class Parameter(MetaTensor):
|
||||
"""
|
||||
Parameter types of cell models.
|
||||
|
||||
After initialized `Parameter` is a subtype of `Tensor`.
|
||||
|
||||
In graph mode, if init `Parameter` by a `Initializer`, the type of Parameter will be a `MetaTensor`
|
||||
not a `Tensor`. `MetaTensor` only save the shape type info of a tensor with no memory usage. The shape
|
||||
can be change while compile for auto-parallel. Call `init_data` will return a Tensor Parameter with
|
||||
initialized data.
|
||||
|
||||
Note:
|
||||
Each parameter of Cell is represented by Parameter class.
|
||||
|
||||
|
@ -52,23 +58,85 @@ class Parameter:
|
|||
layerwise_parallel (bool): A kind of model parallel mode. When layerwise_parallel is true in paralle mode,
|
||||
broadcast and gradients communication would not be applied on parameters. Default: False.
|
||||
"""
|
||||
__base_type__ = {}
|
||||
|
||||
def __new__(cls, default_input, name, *args, **kwargs):
|
||||
input_class, *class_init_args = Parameter._get_parameter_new_args(default_input)
|
||||
new_type = Parameter._get_base_class(input_class)
|
||||
obj = input_class.__new__(new_type)
|
||||
input_class.__init__(obj, *class_init_args)
|
||||
# it's better to make the Initializer a kind of metatensor.
|
||||
obj.init_mode = None
|
||||
if isinstance(default_input, Initializer):
|
||||
obj.init_mode = default_input
|
||||
return obj
|
||||
|
||||
def __reduce_ex__(self, _):
|
||||
data = self
|
||||
if self.init_mode is not None:
|
||||
data = self.init_mode
|
||||
else:
|
||||
# cast to break deep infinit loop while deepcopy
|
||||
data = Tensor(self)
|
||||
return (
|
||||
Parameter, (data, self.name, self.requires_grad, self.layerwise_parallel))
|
||||
|
||||
def __init__(self, default_input, name, requires_grad=True, layerwise_parallel=False):
|
||||
self._value = ParamValue()
|
||||
self.set_parameter_data(default_input)
|
||||
self.name = name
|
||||
self.requires_grad = requires_grad
|
||||
self.layerwise_parallel = layerwise_parallel
|
||||
# this flag for tensor copy data.
|
||||
self.init_flag = False
|
||||
# this flag is for ge variable copy data.
|
||||
self._is_init = False
|
||||
self._inited_param = None
|
||||
self._sliced = False
|
||||
self.is_param_ps = False
|
||||
self._cast_type = None
|
||||
self.init_in_server = False
|
||||
if context.get_context("mode") == context.PYNATIVE_MODE:
|
||||
self.init_data()
|
||||
|
||||
@staticmethod
|
||||
def _get_base_class(input_class):
|
||||
input_class_name = f'Parameter{input_class.__name__}'
|
||||
if input_class_name in Parameter.__base_type__:
|
||||
new_type = Parameter.__base_type__[input_class_name]
|
||||
else:
|
||||
new_type = type(input_class_name, (Parameter, input_class), {})
|
||||
Parameter.__base_type__[input_class_name] = new_type
|
||||
return new_type
|
||||
|
||||
@staticmethod
|
||||
def _get_parameter_new_args(data):
|
||||
"""Set `default_input` of current `Parameter`."""
|
||||
if isinstance(data, bool):
|
||||
raise ValueError('Parameter data can not be `bool`')
|
||||
if isinstance(data, Initializer):
|
||||
if context.get_context("mode") == context.PYNATIVE_MODE:
|
||||
# always init data while in pynative mode.
|
||||
data = data.to_tensor()
|
||||
else:
|
||||
return (MetaTensor, data.dtype, data.shape)
|
||||
if isinstance(data, Tensor):
|
||||
# make a copy of Tensor to init the parameter
|
||||
return (Tensor, data.asnumpy(),)
|
||||
if isinstance(data, int):
|
||||
return (Tensor, data, mstype.int32)
|
||||
if isinstance(data, float):
|
||||
return (Tensor, data, mstype.float32)
|
||||
return (Tensor, data)
|
||||
|
||||
def __str__(self):
|
||||
value_str = MetaTensor.__repr__(self)
|
||||
if isinstance(self, Tensor):
|
||||
value_str = Tensor.__repr__(self)
|
||||
return f'Parameter (name={self._value.name}, value={value_str})'
|
||||
|
||||
def __repr__(self):
|
||||
format_str = 'Parameter (name={name})'
|
||||
return format_str.format(name=self._value.name)
|
||||
value_str = MetaTensor.__repr__(self)
|
||||
if isinstance(self, Tensor):
|
||||
value_str = Tensor.__repr__(self)
|
||||
return f'Parameter (name={self._value.name}, value={value_str})'
|
||||
|
||||
def __parameter__(self):
|
||||
"""For parse check."""
|
||||
|
@ -77,6 +145,13 @@ class Parameter:
|
|||
self.is_param_ps = True
|
||||
self.init_in_server = init_in_server
|
||||
|
||||
|
||||
@property
|
||||
def inited_param(self):
|
||||
"""Get the new parameter after call the init_data."""
|
||||
return self._inited_param
|
||||
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
"""Get the name of the parameter."""
|
||||
|
@ -157,15 +232,11 @@ class Parameter:
|
|||
x._value.name = prefix + '.' + self._value.name
|
||||
x.is_init = False
|
||||
if init != 'same':
|
||||
shape = self.default_input.shape
|
||||
dtype = self.default_input.dtype
|
||||
if isinstance(init, (str, Initializer, numbers.Number)):
|
||||
x.init_mode = initializer(init, shape=shape, dtype=dtype)
|
||||
x.default_input = MetaTensor(dtype, shape)
|
||||
if context.get_context("mode") == context.PYNATIVE_MODE:
|
||||
x.init_data()
|
||||
else:
|
||||
x.default_input = initializer(init, shape=shape, dtype=dtype)
|
||||
shape = self.shape
|
||||
dtype = self.dtype
|
||||
x.default_input = initializer(init, shape=shape, dtype=dtype)
|
||||
if context.get_context("mode") == context.PYNATIVE_MODE:
|
||||
x.init_data()
|
||||
return x
|
||||
|
||||
@property
|
||||
|
@ -195,50 +266,65 @@ class Parameter:
|
|||
|
||||
@property
|
||||
def default_input(self):
|
||||
return self._data
|
||||
return self
|
||||
|
||||
@default_input.setter
|
||||
def default_input(self, data):
|
||||
self._data = data
|
||||
self._value.data = data
|
||||
self.set_parameter_data(data)
|
||||
|
||||
def __add__(self, other):
|
||||
return self.default_input + other
|
||||
def _update_tensor_data(self, data):
|
||||
"Update the parameter by a Tensor."
|
||||
if isinstance(self, Tensor):
|
||||
# for Tensor same shape:
|
||||
return self.assign_value(data)
|
||||
# create a new tensor
|
||||
return Parameter(data, self.name, self.requires_grad)
|
||||
|
||||
def __sub__(self, other):
|
||||
return self.default_input - other
|
||||
def set_parameter_data(self, data, slice_shape=False):
|
||||
"""
|
||||
Set `default_input` of current `Parameter`.
|
||||
|
||||
def __mul__(self, other):
|
||||
return self.default_input * other
|
||||
Args:
|
||||
data (Union[Tensor, Initializer]): new data.
|
||||
slice_shape (bool): If slice the Parameter. Default: False.
|
||||
|
||||
def __truediv__(self, other):
|
||||
return self.default_input / other
|
||||
Retruns:
|
||||
Parameter, the parameter after set data.
|
||||
"""
|
||||
if not isinstance(data, (MetaTensor, Initializer)):
|
||||
raise ValueError(f"Parameter data must be `Initializer` or a kind of `MetaTensor` "
|
||||
f"(like `Tensor` or `MetaTensor`). But with type {type(data)}.")
|
||||
# both not init.
|
||||
is_incoming_tensor = isinstance(data, Tensor)
|
||||
is_current_tensor = isinstance(self, Tensor)
|
||||
|
||||
def __setitem__(self, index, value):
|
||||
default_input = self.default_input
|
||||
default_input[index] = value
|
||||
return self
|
||||
|
||||
def set_parameter_data(self, data):
|
||||
"""Set `default_input` of current `Parameter`."""
|
||||
if isinstance(data, bool):
|
||||
raise ValueError('Parameter data can not be `bool`')
|
||||
if isinstance(data, Tensor):
|
||||
# make a copy of Tensor to init the parameter
|
||||
data = Tensor(data.asnumpy())
|
||||
data.init_flag = False
|
||||
elif isinstance(data, Initializer):
|
||||
self.init_mode = data
|
||||
data = MetaTensor(self.init_mode.dtype, self.init_mode.shape)
|
||||
elif isinstance(data, int):
|
||||
data = Tensor(data, dtype=mstype.int32)
|
||||
elif isinstance(data, float):
|
||||
data = Tensor(data, dtype=mstype.float32)
|
||||
if is_incoming_tensor and not is_current_tensor:
|
||||
raise TypeError("Parameter is a `MetaTensor` and not initializered, `data` for `set_parameter_data`"
|
||||
"should be a Initializer. If you want to update it by Tensor, call method"
|
||||
"`init_parameters_data` of `Cell` to init and replace all the Parameter of"
|
||||
"network, then call this method.")
|
||||
if tuple(self.shape) != tuple(data.shape):
|
||||
# If Slice create Parameter shape can be change.
|
||||
if slice_shape:
|
||||
self._update_tensor_data(data)
|
||||
self.sliced = True
|
||||
else:
|
||||
raise ValueError(f"Can not change the shape of Parameter which has been initialized."
|
||||
f" Current shape is {self.shape}, and incoming is {data.shape}.")
|
||||
if self.dtype != data.dtype:
|
||||
raise ValueError(f"Can not change the Parameter dtype. Current dtype is {self.set_dtype}"
|
||||
f", and incoming is {data.dtype}. Use .set_dtype(xxx) to change the dtype.")
|
||||
if isinstance(data, Initializer):
|
||||
# The parameter has been initializered, directly update by the data
|
||||
if is_current_tensor:
|
||||
self._update_tensor_data(data.to_tensor())
|
||||
else:
|
||||
self.init_mode = data
|
||||
elif is_incoming_tensor or is_current_tensor:
|
||||
self._update_tensor_data(data)
|
||||
else:
|
||||
data = Tensor(data)
|
||||
data.init_flag = False
|
||||
|
||||
self.default_input = data
|
||||
raise ValueError(f"Not support to update the Parameter by {data}")
|
||||
return self
|
||||
|
||||
def init_data(self, layout=None, set_sliced=False):
|
||||
"""
|
||||
|
@ -252,31 +338,37 @@ class Parameter:
|
|||
- slice_shape (list[int]): Shape of slice.
|
||||
set_sliced (bool): True if should set parameter sliced after init the data of initializer.
|
||||
Default: False.
|
||||
|
||||
Returns:
|
||||
Parameter, Parameter after init data.
|
||||
"""
|
||||
if isinstance(self.default_input, Tensor):
|
||||
# skip if data already initialized.
|
||||
return
|
||||
if self.init_mode is None:
|
||||
return self
|
||||
if self.inited_param is not None:
|
||||
return self.inited_param
|
||||
if layout is not None:
|
||||
if not isinstance(layout, list):
|
||||
raise TypeError("The layout should be list! layout is {}."
|
||||
.format(layout))
|
||||
raise TypeError("The layout should be list! layout is {}.".format(layout))
|
||||
if len(layout) < 3:
|
||||
raise ValueError("The length of layout must be larger than 3! layout is {}."
|
||||
.format(layout))
|
||||
raise ValueError("The length of layout must be larger than 3! layout is {}.".format(layout))
|
||||
slice_index = int(_get_slice_index(layout[0], layout[1]))
|
||||
if (self.init_in_server and self.is_param_ps and isinstance(self.init_mode, Initializer)):
|
||||
self.default_input = self.init_mode.to_tensor(0, [1])
|
||||
data = self.init_mode.to_tensor(0, [1])
|
||||
else:
|
||||
self.default_input = self.init_mode.to_tensor(slice_index, layout[2])
|
||||
data = self.init_mode.to_tensor(slice_index, layout[2])
|
||||
else:
|
||||
if (self.init_in_server and self.is_param_ps and isinstance(self.init_mode, Initializer)):
|
||||
self.default_input = self.init_mode.to_tensor(0, [1])
|
||||
data = self.init_mode.to_tensor(0, [1])
|
||||
else:
|
||||
self.default_input = self.init_mode.to_tensor()
|
||||
data = self.init_mode.to_tensor()
|
||||
|
||||
self.init_mode = None
|
||||
obj = self._update_tensor_data(data)
|
||||
if id(obj) != id(self):
|
||||
self._inited_param = obj
|
||||
obj.init_mode = None
|
||||
if set_sliced:
|
||||
self.sliced = True
|
||||
obj.sliced = True
|
||||
return obj
|
||||
|
||||
|
||||
class ParameterTuple(tuple):
|
||||
|
|
|
@ -75,7 +75,7 @@ class Tensor(Tensor_):
|
|||
self._virtual_flag = False
|
||||
|
||||
def __repr__(self):
|
||||
return str(self.__str__())
|
||||
return str(Tensor_.__str__(self))
|
||||
|
||||
def __add__(self, other):
|
||||
out = tensor_operator_registry.get('__add__')(self, other)
|
||||
|
|
|
@ -283,11 +283,11 @@ class Parameter : public ANode {
|
|||
std::string fullname_with_scope() override { return name(); };
|
||||
|
||||
bool has_default() const { return has_default_; }
|
||||
void set_default_param(ParamValuePtr param) {
|
||||
void set_default_param(ValuePtr param) {
|
||||
default_param_ = param;
|
||||
has_default_ = true;
|
||||
}
|
||||
ParamValuePtr default_param() const { return default_param_; }
|
||||
ValuePtr default_param() const { return default_param_; }
|
||||
|
||||
bool operator==(const AnfNode &other) const override {
|
||||
if (!other.isa<Parameter>()) {
|
||||
|
@ -303,7 +303,7 @@ class Parameter : public ANode {
|
|||
private:
|
||||
std::string name_;
|
||||
bool has_default_;
|
||||
ParamValuePtr default_param_;
|
||||
ValuePtr default_param_;
|
||||
};
|
||||
using ParameterPtr = std::shared_ptr<Parameter>;
|
||||
|
||||
|
|
|
@ -33,9 +33,6 @@ class ParamValue {
|
|||
|
||||
virtual ~ParamValue() = default;
|
||||
|
||||
tensor::MetaTensorPtr value() const { return value_; }
|
||||
void set_value(const tensor::MetaTensorPtr &value) { value_ = value; }
|
||||
|
||||
const std::string &name() const { return name_; }
|
||||
void set_name(const std::string &name) { name_ = name; }
|
||||
|
||||
|
@ -72,7 +69,6 @@ class ParamValue {
|
|||
}
|
||||
|
||||
private:
|
||||
tensor::MetaTensorPtr value_;
|
||||
std::string name_{"Parameter"};
|
||||
bool requires_grad_{true};
|
||||
bool layerwise_parallel_{false};
|
||||
|
|
|
@ -36,7 +36,7 @@ struct AnfQuantParam {
|
|||
int32_t numBits;
|
||||
AnfQuantParam() : scale(1.0), zeroPoint(0), min(0.0), max(0.0), narrowRange(false), numBits(8), inited(false) {}
|
||||
};
|
||||
class ParamValueLite : public ParamValue {
|
||||
class ParamValueLite : public Value {
|
||||
public:
|
||||
ParamValueLite() : tensor_addr_(nullptr), tensor_size_(0) {}
|
||||
virtual ~ParamValueLite() = default;
|
||||
|
@ -65,6 +65,10 @@ class ParamValueLite : public ParamValue {
|
|||
quant_params_.emplace_back(std::move(quant_param));
|
||||
}
|
||||
|
||||
bool operator==(const Value &other) const override {
|
||||
this == &other;
|
||||
}
|
||||
|
||||
private:
|
||||
void *tensor_addr_;
|
||||
size_t tensor_size_;
|
||||
|
|
|
@ -229,7 +229,6 @@ class Cell:
|
|||
for item in inputs:
|
||||
if isinstance(item, numpy.ndarray):
|
||||
raise TypeError("cell inputs should not be numpy array.")
|
||||
self.init_parameters_data()
|
||||
orign_grad = []
|
||||
if self.requires_grad is True:
|
||||
_pynative_exec.set_grad_flag(True)
|
||||
|
@ -350,19 +349,8 @@ class Cell:
|
|||
params (dict): The parameters dictionary used for init data graph.
|
||||
"""
|
||||
if params is None:
|
||||
for key in self.parameters_dict():
|
||||
tensor = self.parameters_dict()[key].data
|
||||
if key not in self.parameter_layout_dict:
|
||||
logger.info("layout dict does not contain the key %s", key)
|
||||
continue
|
||||
if self.parameters_dict()[key].sliced:
|
||||
logger.debug("Param %s is already sliced.", key)
|
||||
continue
|
||||
layout = self.parameter_layout_dict[key]
|
||||
new_tensor = _load_tensor_by_layout(tensor, layout)
|
||||
self.parameters_dict()[key].set_parameter_data(new_tensor)
|
||||
self.parameters_dict()[key].sliced = True
|
||||
elif isinstance(params, OrderedDict):
|
||||
params = self.parameters_dict()
|
||||
if isinstance(params, OrderedDict):
|
||||
for key in params:
|
||||
tensor = params[key].data
|
||||
if key not in self.parameter_layout_dict:
|
||||
|
@ -373,8 +361,7 @@ class Cell:
|
|||
continue
|
||||
layout = self.parameter_layout_dict[key]
|
||||
new_tensor = _load_tensor_by_layout(tensor, layout)
|
||||
params[key].set_parameter_data(new_tensor)
|
||||
params[key].sliced = True
|
||||
params[key].set_parameter_data(new_tensor, True)
|
||||
else:
|
||||
raise TypeError('Parameters need OrderedDict type, but got {}'.
|
||||
format(type(params)))
|
||||
|
@ -545,17 +532,46 @@ class Cell:
|
|||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def init_parameters_data(self, recurse=True, auto_parallel_mode=False):
|
||||
"""Init parameters' data."""
|
||||
for param in self.get_parameters(expand=recurse):
|
||||
if not auto_parallel_mode:
|
||||
param.init_data()
|
||||
elif param.name not in self.parameter_layout_dict:
|
||||
logger.debug("Layout dict does not contain the key %s.", param.name)
|
||||
param.init_data(set_sliced=True)
|
||||
else:
|
||||
layout = self.parameter_layout_dict[param.name]
|
||||
param.init_data(layout, set_sliced=True)
|
||||
def init_parameters_data(self, auto_parallel_mode=False):
|
||||
"""
|
||||
Init all parameters' data and replace the original saved parameters in cell.
|
||||
|
||||
Args:
|
||||
auto_parallel_mode (bool): If running in auto_parallel_mode.
|
||||
|
||||
Returns:
|
||||
Dict[Parameter, Parameter], returns a dict of original parameter and replaced parameter.
|
||||
"""
|
||||
replace = dict()
|
||||
def _updata(param):
|
||||
if param in replace:
|
||||
return replace[param]
|
||||
layout = None
|
||||
set_sliced = False
|
||||
if auto_parallel_mode:
|
||||
set_sliced = True
|
||||
if param.name not in self.parameter_layout_dict:
|
||||
logger.debug("Layout dict does not contain the key %s.", param.name)
|
||||
else:
|
||||
layout = self.parameter_layout_dict[param.name]
|
||||
new_p = param.init_data(layout, set_sliced=set_sliced)
|
||||
replace[param] = new_p
|
||||
return new_p
|
||||
# replace all original usage.
|
||||
cells = self.cells_and_names()
|
||||
for _, cell in cells:
|
||||
params = cell._params.items()
|
||||
for param_name, param in params:
|
||||
cell._params[param_name] = _updata(param)
|
||||
cell_dict = cell.__dict__
|
||||
for key in cell_dict:
|
||||
if isinstance(cell_dict[key], ParameterTuple):
|
||||
param_tuple = cell_dict[key]
|
||||
new_param_tuple = []
|
||||
for param in param_tuple:
|
||||
new_param_tuple.append(_updata(param))
|
||||
cell.__dict__[key] = ParameterTuple(new_param_tuple)
|
||||
return replace
|
||||
|
||||
def parameters_dict(self, recurse=True):
|
||||
"""
|
||||
|
@ -682,9 +698,10 @@ class Cell:
|
|||
for cell_name, cell in cells:
|
||||
params = cell._params.items()
|
||||
for par_name, par in params:
|
||||
if par and par not in params_set:
|
||||
if par.inited_param is not None:
|
||||
par = par.inited_param
|
||||
if par is not None and par not in params_set:
|
||||
params_set.add(par)
|
||||
|
||||
par_new_name = par_name
|
||||
if cell_name:
|
||||
par_new_name = cell_name + '.' + par_new_name
|
||||
|
|
|
@ -90,7 +90,7 @@ class Optimizer(Cell):
|
|||
|
||||
def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0):
|
||||
super(Optimizer, self).__init__(auto_prefix=False)
|
||||
if parameters and not isinstance(parameters, list):
|
||||
if parameters is not None and not isinstance(parameters, list):
|
||||
parameters = list(parameters)
|
||||
|
||||
if not parameters:
|
||||
|
|
|
@ -295,7 +295,6 @@ def load_param_into_net(net, parameter_dict):
|
|||
logger.error("Failed to combine the net and the parameters.")
|
||||
msg = ("Argument parameter_dict element should be a Parameter, but got {}.".format(type(new_param)))
|
||||
raise TypeError(msg)
|
||||
param.init_data()
|
||||
_update_param(param, new_param)
|
||||
else:
|
||||
param_not_load.append(param.name)
|
||||
|
@ -362,15 +361,13 @@ def _exec_save_checkpoint(train_network, ckpt_file_name, integrated_save=True, a
|
|||
integrated_save (bool): Whether to integrated save in automatic model parallel scene.
|
||||
async_save (bool): Whether asynchronous execute save checkpoint into file. Default: False.
|
||||
"""
|
||||
|
||||
train_network.init_parameters_data()
|
||||
param_dict = {}
|
||||
for _, param in train_network.parameters_and_names():
|
||||
param_dict[param.name] = param
|
||||
|
||||
param_list = []
|
||||
for (key, value) in param_dict.items():
|
||||
each_param = {"name": key}
|
||||
value.init_data()
|
||||
if isinstance(value.data, Tensor):
|
||||
param_data = value.data
|
||||
else:
|
||||
|
|
|
@ -263,6 +263,7 @@ class MobileNetV2(nn.Cell):
|
|||
Examples:
|
||||
>>> _initialize_weights()
|
||||
"""
|
||||
self.init_parameters_data()
|
||||
for _, m in self.cells_and_names():
|
||||
if isinstance(m, (nn.Conv2d, DepthwiseConv)):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
|
|
|
@ -196,6 +196,7 @@ class mobilenetV2(nn.Cell):
|
|||
self.head = nn.SequentialCell(head)
|
||||
|
||||
# init weights
|
||||
self.init_parameters_data()
|
||||
self._initialize_weights()
|
||||
|
||||
def construct(self, x):
|
||||
|
@ -215,6 +216,7 @@ class mobilenetV2(nn.Cell):
|
|||
Examples:
|
||||
>>> _initialize_weights()
|
||||
"""
|
||||
self.init_parameters_data()
|
||||
for _, m in self.cells_and_names():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
|
|
|
@ -200,6 +200,7 @@ class ResUnit(nn.Cell):
|
|||
self.add = P.TensorAdd() if self.use_short_cut_conv else None
|
||||
|
||||
def construct(self, x):
|
||||
"""construct"""
|
||||
if self.first_conv:
|
||||
out = self.expand(x)
|
||||
else:
|
||||
|
@ -289,6 +290,7 @@ class MobileNetV3(nn.Cell):
|
|||
kernel_size=1, has_bias=True, pad_mode='pad')
|
||||
self.squeeze = P.Squeeze(axis=(2, 3))
|
||||
|
||||
self.init_parameters_data()
|
||||
self._initialize_weights()
|
||||
|
||||
def construct(self, x):
|
||||
|
|
|
@ -171,9 +171,9 @@ def test_bert_tdt():
|
|||
netwithgrads.set_train(True)
|
||||
model = Model(netwithgrads)
|
||||
callback = ModelCallback()
|
||||
netwithloss.init_parameters_data()
|
||||
params = netwithloss.trainable_params()
|
||||
for param in params:
|
||||
param.init_data()
|
||||
value = param.default_input
|
||||
name = param.name
|
||||
if isinstance(value, Tensor):
|
||||
|
|
|
@ -207,9 +207,9 @@ def test_bert_percision():
|
|||
netwithgrads.set_train(True)
|
||||
model = Model(netwithgrads)
|
||||
callback = ModelCallback()
|
||||
netwithloss.init_parameters_data()
|
||||
params = netwithloss.trainable_params()
|
||||
for param in params:
|
||||
param.init_data()
|
||||
value = param.default_input
|
||||
name = param.name
|
||||
if isinstance(value, Tensor):
|
||||
|
@ -279,9 +279,9 @@ def test_bert_performance():
|
|||
netwithgrads.set_train(True)
|
||||
model = Model(netwithgrads)
|
||||
callback = ModelCallback()
|
||||
netwithloss.init_parameters_data()
|
||||
params = netwithloss.trainable_params()
|
||||
for param in params:
|
||||
param.init_data()
|
||||
value = param.default_input
|
||||
name = param.name
|
||||
if isinstance(value, Tensor):
|
||||
|
|
|
@ -63,6 +63,7 @@ class LossCallBack(Callback):
|
|||
str(cb_params.net_outputs)))
|
||||
|
||||
def model_fine_tune(train_net, fix_weight_layer):
|
||||
train_net.init_parameters_data()
|
||||
for para in train_net.trainable_params():
|
||||
para.set_parameter_data(Tensor(np.ones(para.data.shape).astype(np.float32) * 0.02))
|
||||
if fix_weight_layer in para.name:
|
||||
|
|
|
@ -174,9 +174,14 @@ def train_process(q, device_id, epoch_size, device_num, enable_hccl):
|
|||
steps_per_epoch=step_size, lr_decay_mode=config.lr_decay_mode))
|
||||
|
||||
# optimizer
|
||||
decayed_params = list(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name,
|
||||
net.trainable_params()))
|
||||
no_decayed_params = [param for param in net.trainable_params() if param not in decayed_params]
|
||||
decayed_params = []
|
||||
no_decayed_params = []
|
||||
for param in net.trainable_params():
|
||||
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
|
||||
decayed_params.append(param)
|
||||
else:
|
||||
no_decayed_params.append(param)
|
||||
|
||||
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
|
||||
{'params': no_decayed_params, 'weight_decay': 0.0},
|
||||
{'order_params': net.trainable_params()}]
|
||||
|
|
|
@ -107,7 +107,6 @@ TEST_F(TestHWInsertMemcpyForHccl, test_cond2) {
|
|||
for (auto p : kg->parameters()) {
|
||||
auto param = p->cast<ParameterPtr>();
|
||||
EXPECT_NE(param, nullptr);
|
||||
param->set_default_param(std::make_shared<ParamValue>());
|
||||
}
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
|
@ -157,7 +156,6 @@ TEST_F(TestHWInsertMemcpyForHccl, test_cond4) {
|
|||
for (auto p : kg->parameters()) {
|
||||
auto param = p->cast<ParameterPtr>();
|
||||
EXPECT_NE(param, nullptr);
|
||||
param->set_default_param(std::make_shared<ParamValue>());
|
||||
}
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
|
@ -185,7 +183,6 @@ TEST_F(TestHWInsertMemcpyForHccl, test_cond5) {
|
|||
for (auto p : kg->parameters()) {
|
||||
auto param = p->cast<ParameterPtr>();
|
||||
EXPECT_NE(param, nullptr);
|
||||
param->set_default_param(std::make_shared<ParamValue>());
|
||||
}
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
|
|
|
@ -766,7 +766,7 @@ TEST_F(AnfRuntimeAlgorithmTest, IsParameterWeight) {
|
|||
auto kernel_graph = std::make_shared<KernelGraph>();
|
||||
auto parameter_node = kernel_graph->add_parameter();
|
||||
MS_EXCEPTION_IF_NULL(parameter_node);
|
||||
auto param_value_new = std::make_shared<ParamValue>();
|
||||
auto param_value_new = std::make_shared<tensor::Tensor>(int64_t(0), kInt32);
|
||||
parameter_node->set_default_param(param_value_new);
|
||||
EXPECT_TRUE(AnfAlgo::IsParameterWeight(parameter_node));
|
||||
EXPECT_THROW(AnfAlgo::IsParameterWeight(nullptr), std::runtime_error);
|
||||
|
|
|
@ -82,7 +82,7 @@ TEST_F(KernelGraphTest, NewParameter) {
|
|||
// test weight parameter node as input
|
||||
auto weight_parameter_node = anf_graph->add_parameter();
|
||||
MS_EXCEPTION_IF_NULL(weight_parameter_node);
|
||||
auto param_value_new = std::make_shared<ParamValue>();
|
||||
auto param_value_new = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, shape);
|
||||
weight_parameter_node->set_default_param(param_value_new);
|
||||
weight_parameter_node->set_abstract(x_abstract);
|
||||
auto new_weight_parameter_node = kernel_graph->NewParameter(weight_parameter_node);
|
||||
|
|
|
@ -225,7 +225,7 @@ def test_div():
|
|||
@non_graph_engine
|
||||
def test_parameter():
|
||||
x = Parameter(initializer(1, [1], ms.float32), name="beta1_power")
|
||||
x.init_data()
|
||||
x = x.init_data()
|
||||
z = x / 2
|
||||
print(z)
|
||||
|
||||
|
|
|
@ -139,14 +139,31 @@ def test_parameter_lazy_init():
|
|||
# Call init_data() without set default_input.
|
||||
para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test1')
|
||||
assert not isinstance(para.default_input, Tensor)
|
||||
para.init_data()
|
||||
para = para.init_data()
|
||||
assert isinstance(para.default_input, Tensor)
|
||||
assert np.array_equal(para.default_input.asnumpy(), np.ones((1, 2, 3)))
|
||||
|
||||
# Call init_data() after default_input is set.
|
||||
para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test2')
|
||||
assert not isinstance(para.default_input, Tensor)
|
||||
para.default_input = Tensor(np.zeros((1, 2, 3)))
|
||||
assert np.array_equal(para.default_input.asnumpy(), np.zeros((1, 2, 3)))
|
||||
para.init_data() # expect no effect.
|
||||
# expect type error when not init
|
||||
with pytest.raises(TypeError):
|
||||
para.default_input = Tensor(np.zeros((1, 2, 3)))
|
||||
# init then assign
|
||||
para = para.init_data()
|
||||
# check the type
|
||||
with pytest.raises(ValueError):
|
||||
para.default_input = Tensor(np.zeros((1, 2, 3)))
|
||||
# check the shape
|
||||
with pytest.raises(ValueError):
|
||||
para.default_input = Tensor(np.zeros((1, 2)))
|
||||
# expect change ok
|
||||
para.default_input = Tensor(np.zeros((1, 2, 3)).astype(np.float32))
|
||||
assert np.array_equal(para.default_input.asnumpy(), np.zeros((1, 2, 3)))
|
||||
para.default_input = initializer('ones', [1, 2, 3], mstype.float32)
|
||||
assert isinstance(para.default_input, Tensor)
|
||||
# same object and has inited
|
||||
assert np.array_equal(para.default_input.asnumpy(), np.ones((1, 2, 3)))
|
||||
# expect no effect.
|
||||
para.init_data()
|
||||
assert np.array_equal(para.default_input.asnumpy(), np.ones((1, 2, 3)))
|
||||
|
|
|
@ -69,8 +69,7 @@ def test_qat_lenet():
|
|||
net = qat.convert_quant_network(
|
||||
net, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
|
||||
# should load the checkpoint. mock here
|
||||
for param in net.get_parameters():
|
||||
param.init_data()
|
||||
net.init_parameters_data()
|
||||
qat.export(net, img, file_name="quant.pb")
|
||||
|
||||
|
||||
|
@ -80,8 +79,7 @@ def test_qat_mobile_per_channel_tf():
|
|||
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
|
||||
network = qat.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
|
||||
# should load the checkpoint. mock here
|
||||
for param in network.get_parameters():
|
||||
param.init_data()
|
||||
network.init_parameters_data()
|
||||
qat.export(network, img, file_name="quant.pb")
|
||||
|
||||
@pytest.mark.skip(reason="no `te.lang.cce` in ut env")
|
||||
|
@ -90,6 +88,5 @@ def test_qat_mobile_per_channel_ff():
|
|||
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
|
||||
network = qat.convert_quant_network(network, bn_fold=True, per_channel=[False, False], symmetric=[True, False])
|
||||
# should load the checkpoint. mock here
|
||||
for param in network.get_parameters():
|
||||
param.init_data()
|
||||
network.init_parameters_data()
|
||||
qat.export(network, img, file_name="quant.pb")
|
||||
|
|
Loading…
Reference in New Issue