forked from mindspore-Ecosystem/mindspore
[feat][assistant][I3PYD0] add new Ascend operator HSigmoid
This commit is contained in:
parent
a377ade89f
commit
b6c575689d
|
@ -104,6 +104,9 @@ mindspore/.commit_id
|
|||
|
||||
# lite test file
|
||||
mindspore/lite/test/do_test/
|
||||
HSigmoid_Test/
|
||||
.vs
|
||||
|
||||
|
||||
# lite opencl compile file
|
||||
*.cl.inc
|
||||
|
|
|
@ -60,4 +60,4 @@ AbstractBasePtr HSigmoidGradInfer(const abstract::AnalysisEnginePtr &, const Pri
|
|||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(HSigmoidGrad, prim::kPrimHSigmoidGrad, HSigmoidGradInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -40,4 +40,4 @@ using PrimHSigmoidGradPtr = std::shared_ptr<HSigmoidGrad>;
|
|||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_HSIGMOID_GRAD_H_
|
||||
#endif // MINDSPORE_CORE_OPS_HSIGMOID_GRAD_H_
|
||||
|
|
|
@ -0,0 +1,52 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "ops/hsigmoid.h"
|
||||
#include <string>
|
||||
#include <set>
|
||||
#include <map>
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
auto in_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->GetShapeTrack())[kShape];
|
||||
return std::make_shared<abstract::Shape>(in_shape);
|
||||
}
|
||||
TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
if (std::any_of(input_args.begin(), input_args.end(), [](const AbstractBasePtr &a) { return a == nullptr; })) {
|
||||
MS_LOG(EXCEPTION) << "nullptr";
|
||||
}
|
||||
std::map<std::string, TypePtr> types;
|
||||
const std::set<TypePtr> valid_types = {kFloat16, kFloat32};
|
||||
types.emplace("input_x", input_args[0]->BuildType());
|
||||
return CheckAndConvertUtils::CheckTensorTypeSame(types, valid_types, prim->name());
|
||||
}
|
||||
|
||||
} // namespace
|
||||
AbstractBasePtr HSigmoidInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args),
|
||||
InferShape(primitive, input_args)->shape());
|
||||
}
|
||||
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(HSigmoid, prim::kPrimHSigmoid, HSigmoidInfer, nullptr, true);
|
||||
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,38 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
#include "ops/primitive_c.h"
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameHSigmoid = "HSigmoid";
|
||||
class HSigmoid : public PrimitiveC {
|
||||
public:
|
||||
HSigmoid() : PrimitiveC(kNameHSigmoid) { InitIOName({"input_x"}, {"output"}); }
|
||||
~HSigmoid() = default;
|
||||
MS_DECLARE_PARENT(HSigmoid, PrimitiveC); // come from ops/primitive_c.h
|
||||
};
|
||||
|
||||
AbstractBasePtr HSigmoidInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
|
||||
using PrimHSigmoidPtr = std::shared_ptr<HSigmoid>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -685,14 +685,14 @@ class HSigmoid(Cell):
|
|||
TypeError: If dtype of `x` is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
||||
>>> hsigmoid = nn.HSigmoid()
|
||||
>>> result = hsigmoid(x)
|
||||
>>> print(result)
|
||||
[0.3333 0.1666 0.5 0.833 0.6665]
|
||||
[0.3333 0.1666 0.5 0.8335 0.6665]
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
|
@ -700,8 +700,8 @@ class HSigmoid(Cell):
|
|||
super(HSigmoid, self).__init__()
|
||||
self.hsigmoid = P.HSigmoid()
|
||||
|
||||
def construct(self, x):
|
||||
return self.hsigmoid(x)
|
||||
def construct(self, input_x):
|
||||
return self.hsigmoid(input_x)
|
||||
|
||||
|
||||
class LogSigmoid(Cell):
|
||||
|
|
|
@ -392,3 +392,4 @@ from .ctc_loss_v2_grad import _ctc_loss_v2_grad_tbe
|
|||
from .soft_shrink import _soft_shrink_tbe
|
||||
from .soft_shrink_grad import _soft_shrink_grad_tbe
|
||||
from .hsigmoid_grad import _hsigmoid_grad_tbe
|
||||
from .hsigmoid import _hsigmoid_tbe
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""HSigmoid op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
hsigmoid_op_info = TBERegOp("HSigmoid") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("hard_sigmoid.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("hard_sigmoid") \
|
||||
.partial_flag(True) \
|
||||
.attr("alpha", "optional", "float", "all", "0.16666666") \
|
||||
.attr("beta", "optional", "float", "all", "0.5") \
|
||||
.input(0, "input_x", False, "required", "all") \
|
||||
.output(0, "output_y", False, "required", "all") \
|
||||
.op_pattern("formatAgnostic") \
|
||||
.dtype_format(DataType.F16_None, DataType.F16_None) \
|
||||
.dtype_format(DataType.F32_None, DataType.F32_None) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(hsigmoid_op_info)
|
||||
def _hsigmoid_tbe():
|
||||
"""HSigmoid TBE register"""
|
||||
return
|
|
@ -794,55 +794,6 @@ class Sigmoid(PrimitiveWithInfer):
|
|||
return input_x
|
||||
|
||||
|
||||
class HSigmoid(PrimitiveWithInfer):
|
||||
r"""
|
||||
Hard sigmoid activation function.
|
||||
|
||||
Applies hard sigmoid activation element-wise. The input is a Tensor with any valid shape.
|
||||
|
||||
Hard sigmoid is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{x_{i} + 3}{6})),
|
||||
|
||||
where :math:`x_i` is an element of the input Tensor.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
|
||||
additional dimensions, with float16 or float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the same type and shape as the `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> hsigmoid = ops.HSigmoid()
|
||||
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
|
||||
>>> result = hsigmoid(input_x)
|
||||
>>> print(result)
|
||||
[0.3333 0.1666 0.5 0.833 0.6665]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""Initialize HSigmoid."""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_dtype_valid("x", x_dtype, (mstype.float16, mstype.float32), self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class Tanh(PrimitiveWithInfer):
|
||||
r"""
|
||||
Tanh activation function.
|
||||
|
@ -8716,3 +8667,43 @@ class SoftShrink(Primitive):
|
|||
"""Initialize SoftShrink"""
|
||||
validator.check_value_type("lambd", lambd, [float], self.name)
|
||||
validator.check_number("lambd", lambd, 0, Rel.GE, self.name)
|
||||
|
||||
class HSigmoid(Primitive):
|
||||
r"""
|
||||
Hard sigmoid activation function.
|
||||
|
||||
Applies hard sigmoid activation element-wise. The input is a Tensor with any valid shape.
|
||||
|
||||
Hard sigmoid is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{x_{i} + 3}{6})),
|
||||
|
||||
where :math:`x_i` is an element of the input Tensor.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
|
||||
additional dimensions, with float16 or float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the same type and shape as the `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> hsigmoid = ops.HSigmoid()
|
||||
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mstype.float16)
|
||||
>>> result = hsigmoid(input_x)
|
||||
>>> print(result)
|
||||
[0.3333 0.1666 0.5 0.8335 0.6665]
|
||||
"""
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""Initialize HSigmoid."""
|
||||
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
|
||||
|
|
|
@ -2159,6 +2159,11 @@ test_case_nn_ops = [
|
|||
'desc_inputs': [Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]), mstype.float16),
|
||||
Tensor(np.array([[-4, -3, -2], [1, 2, 4]]), mstype.float16)],
|
||||
'skip': ['backward']}),
|
||||
('HSigmoid', {
|
||||
'block': P.HSigmoid(),
|
||||
'desc_inputs': [Tensor(np.array([[-4, 4, 1]]), mstype.float32)],
|
||||
'desc_bprop': [Tensor(np.array([[0, 1, 0.6666]]), mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
]
|
||||
|
||||
test_case_array_ops = [
|
||||
|
|
Loading…
Reference in New Issue