forked from mindspore-Ecosystem/mindspore
[feat][assistant][I3PYD4] add new data operator HShrink and HShrinkGrad
This commit is contained in:
parent
accb87606a
commit
b04036e13c
|
@ -376,6 +376,7 @@ inline const PrimitivePtr kFusedMulAdd = std::make_shared<Primitive>("FusedMulAd
|
|||
inline const PrimitivePtr kPrimSoftShrink = std::make_shared<Primitive>("SoftShrink");
|
||||
inline const PrimitivePtr kPrimSoftShrinkGrad = std::make_shared<Primitive>("SoftShrinkGrad");
|
||||
inline const PrimitivePtr kPrimHShrink = std::make_shared<Primitive>("HShrink");
|
||||
inline const PrimitivePtr kPrimHShrinkGrad = std::make_shared<Primitive>("HShrinkGrad");
|
||||
|
||||
// Comm ops
|
||||
inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator");
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/grad/hshrink_grad.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/primitive_infer_map.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
|
||||
abstract::ShapePtr HShrinkGradInferShape(const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
auto gradients_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
auto features_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[1]->BuildShape())[kShape];
|
||||
|
||||
CheckAndConvertUtils::Check("gradients_shape", gradients_shape, kEqual, "features_shape", features_shape, prim_name,
|
||||
TypeError);
|
||||
return std::make_shared<abstract::Shape>(gradients_shape);
|
||||
}
|
||||
|
||||
TypePtr HShrinkGradInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
CheckAndConvertUtils::CheckInteger("input number", input_args.size(), kEqual, 2, prim->name());
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
std::map<std::string, TypePtr> types;
|
||||
const std::set<TypePtr> valid_types = {kFloat16, kFloat32};
|
||||
types.emplace("gradients", input_args[0]->BuildType());
|
||||
types.emplace("features", input_args[1]->BuildType());
|
||||
return CheckAndConvertUtils::CheckTensorTypeSame(types, valid_types, prim->name());
|
||||
}
|
||||
|
||||
AbstractBasePtr HShrinkGradInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return std::make_shared<abstract::AbstractTensor>(HShrinkGradInferType(primitive, input_args),
|
||||
HShrinkGradInferShape(primitive, input_args)->shape());
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(HShrinkGrad, prim::kPrimHShrinkGrad, HShrinkGradInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,43 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_HShrink_GRAD_H_
|
||||
#define MINDSPORE_CORE_OPS_HShrink_GRAD_H_
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "ops/primitive_c.h"
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameHShrinkGrad = "HShrinkGrad";
|
||||
class HShrinkGrad : public PrimitiveC {
|
||||
public:
|
||||
HShrinkGrad() : PrimitiveC(kNameHShrinkGrad) { InitIOName({"gradients", "features"}, {"backprops"}); }
|
||||
~HShrinkGrad() = default;
|
||||
MS_DECLARE_PARENT(HShrinkGrad, PrimitiveC);
|
||||
};
|
||||
|
||||
AbstractBasePtr HShrinkGradInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using PrimHShrinkGradPtr = std::shared_ptr<HShrinkGrad>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_HShrink_GRAD_H_
|
|
@ -44,3 +44,15 @@ def get_bprop_softshrink(self):
|
|||
return (dx,)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.HShrink)
|
||||
def get_bprop_hshrink(self):
|
||||
"""Grad definition for `HShrinkGrad` operation."""
|
||||
grad = G.HShrinkGrad()
|
||||
|
||||
def bprop(features, out, gradients):
|
||||
dx = grad(gradients, features)
|
||||
return (dx,)
|
||||
|
||||
return bprop
|
||||
|
|
|
@ -395,3 +395,4 @@ from .soft_shrink_grad import _soft_shrink_grad_tbe
|
|||
from .hsigmoid_grad import _hsigmoid_grad_tbe
|
||||
from .hsigmoid import _hsigmoid_tbe
|
||||
from .hshrink import _hshrink_tbe
|
||||
from .hshrink_grad import _hshrink_grad_tbe
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""HShrinkGrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
hshrink_grad_op_info = TBERegOp("HShrinkGrad") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("hard_shrink_grad.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("hard_shrink_grad") \
|
||||
.partial_flag(True) \
|
||||
.attr("lambda", "optional", "float", "all", "0.5") \
|
||||
.input(0, "gradients", False, "required", "all") \
|
||||
.input(1, "features", False, "required", "all") \
|
||||
.output(0, "backprops", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(hshrink_grad_op_info)
|
||||
def _hshrink_grad_tbe():
|
||||
"""HShrinkGrad TBE register"""
|
||||
return
|
|
@ -2212,3 +2212,34 @@ class SoftShrinkGrad(Primitive):
|
|||
self.init_prim_io_names(inputs=['input_grad', 'input_x'], outputs=['output'])
|
||||
validator.check_value_type("lambd", lambd, [float], self.name)
|
||||
validator.check_number("lambd", lambd, 0, Rel.GE, self.name)
|
||||
|
||||
|
||||
class HShrinkGrad(Primitive):
|
||||
"""
|
||||
Computes gradients for HShrinkGrad operation.
|
||||
|
||||
Args:
|
||||
lambd (float): the λ value for the Hardshrink formulation. Default: 0.5
|
||||
|
||||
Inputs:
|
||||
- **gradients** (Tensor) - the gradients of loss to output of HShrink function.
|
||||
Currently gradients data type only support float16 and float32.
|
||||
- **features** (Tensor) - Must be the input `input_x` of the forward operator HSHrink.
|
||||
Currently features data type only support float16 and float32.
|
||||
|
||||
Outputs:
|
||||
backprops - Tensor, with the same shape and data type as `features`.
|
||||
|
||||
Rasise:
|
||||
TypeError: If `lambd` is not a float.
|
||||
TypeError: If shape of `gradients` is not the same as `features`.
|
||||
TypeError: If dtype of `gradients` is not the same as `features`.
|
||||
TypeError: If dtype of `gradients` or `features` is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, lambd=0.5):
|
||||
validator.check_value_type("lambd", lambd, [float], self.name)
|
||||
|
|
|
@ -2209,6 +2209,11 @@ test_case_nn_ops = [
|
|||
'desc_inputs': [Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), mstype.float32)],
|
||||
'desc_bprop': [],
|
||||
'skip': ['backward']}),
|
||||
('HShrinkGrad', {
|
||||
'block': G.HShrinkGrad(),
|
||||
'desc_inputs': [Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]), mstype.float16),
|
||||
Tensor(np.array([[-4, -3, -2], [1, 2, 4]]), mstype.float16)],
|
||||
'skip': ['backward']}),
|
||||
]
|
||||
|
||||
test_case_array_ops = [
|
||||
|
|
Loading…
Reference in New Issue