forked from mindspore-Ecosystem/mindspore
!4599 Fix nn.CentralCrop calculation result in mixed precision.
Merge pull request !4599 from liuxiao93/nn-CentralCrop
This commit is contained in:
commit
abe89923d8
|
@ -393,9 +393,8 @@ def _get_bbox(rank, shape, central_fraction):
|
||||||
else:
|
else:
|
||||||
n, c, h, w = shape
|
n, c, h, w = shape
|
||||||
|
|
||||||
central_fraction = central_fraction.asnumpy()[0]
|
bbox_h_start = int(np.round((float(h) - float(h) * central_fraction) / 2))
|
||||||
bbox_h_start = int((float(h) - float(h) * central_fraction) / 2)
|
bbox_w_start = int(np.round((float(w) - float(w) * central_fraction) / 2))
|
||||||
bbox_w_start = int((float(w) - float(w) * central_fraction) / 2)
|
|
||||||
bbox_h_size = h - bbox_h_start * 2
|
bbox_h_size = h - bbox_h_start * 2
|
||||||
bbox_w_size = w - bbox_w_start * 2
|
bbox_w_size = w - bbox_w_start * 2
|
||||||
|
|
||||||
|
@ -432,7 +431,6 @@ class CentralCrop(Cell):
|
||||||
validator.check_value_type("central_fraction", central_fraction, [float], self.cls_name)
|
validator.check_value_type("central_fraction", central_fraction, [float], self.cls_name)
|
||||||
self.central_fraction = validator.check_number_range('central_fraction', central_fraction,
|
self.central_fraction = validator.check_number_range('central_fraction', central_fraction,
|
||||||
0.0, 1.0, Rel.INC_RIGHT, self.cls_name)
|
0.0, 1.0, Rel.INC_RIGHT, self.cls_name)
|
||||||
self.central_fraction_tensor = Tensor(np.array([central_fraction]).astype(np.float64))
|
|
||||||
self.slice = P.Slice()
|
self.slice = P.Slice()
|
||||||
|
|
||||||
def construct(self, image):
|
def construct(self, image):
|
||||||
|
@ -443,7 +441,7 @@ class CentralCrop(Cell):
|
||||||
if self.central_fraction == 1.0:
|
if self.central_fraction == 1.0:
|
||||||
return image
|
return image
|
||||||
|
|
||||||
bbox_begin, bbox_size = _get_bbox(rank, image_shape, self.central_fraction_tensor)
|
bbox_begin, bbox_size = _get_bbox(rank, image_shape, self.central_fraction)
|
||||||
image = self.slice(image, bbox_begin, bbox_size)
|
image = self.slice(image, bbox_begin, bbox_size)
|
||||||
|
|
||||||
return image
|
return image
|
||||||
|
|
Loading…
Reference in New Issue