Merge pull request !4957 from chenweifeng/lstm-readme
This commit is contained in:
mindspore-ci-bot 2020-08-28 15:26:52 +08:00 committed by Gitee
commit a8c5dfae3b
3 changed files with 256 additions and 58 deletions

View File

@ -1,13 +1,129 @@
# LSTM Example # Contents
## Description - [LSTM Description](#lstm-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Dataset Preparation](#dataset-preparation)
- [Training Process](#training-process)
- [Evaluation Process](#evaluation-process)
- [Model Description](#model-description)
- [Performance](#performance)
- [Training Performance](#training-performance)
- [Evaluation Performance](#evaluation-performance)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [LSTM Description](#contents)
This example is for LSTM model training and evaluation. This example is for LSTM model training and evaluation.
## Requirements [Paper](https://www.aclweb.org/anthology/P11-1015/): Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, Christopher Potts. [Learning Word Vectors for Sentiment Analysis](https://www.aclweb.org/anthology/P11-1015/). Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011
- Install [MindSpore](https://www.mindspore.cn/install/en). # [Model Architecture](#contents)
LSTM contains embeding, encoder and decoder modules. Encoder module consists of LSTM layer. Decoder module consists of fully-connection layer.
# [Dataset](#contents)
- aclImdb_v1 for training evaluation.[Large Movie Review Dataset](http://ai.stanford.edu/~amaas/data/sentiment/)
- GloVe: Vector representations for words.[GloVe: Global Vectors for Word Representation](https://nlp.stanford.edu/projects/glove/)
# [Environment Requirements](#contents)
- HardwareGPU/CPU
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/en/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/en/master/index.html)
# [Quick Start](#contents)
- runing on GPU
```bash
# run training example
bash run_train_gpu.sh 0 ./aclimdb ./glove_dir
# run evaluation example
bash run_eval_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```shell
.
├── lstm
   ├── README.md # descriptions about LSTM
   ├── script
   │   ├── run_eval_gpu.sh # shell script for evaluation on GPU
   │   └── run_train_gpu.sh # shell script for training on GPU
   ├── src
   │   ├── config.py # parameter configuration
   │   ├── dataset.py # dataset preprocess
   │   ├── imdb.py # imdb dataset read script
   │   └── lstm.py # Sentiment model
   ├── eval.py # evaluation script
   └── train.py # training script
```
## [Script Parameters](#contents)
### Training Script Parameters
```python
usage: train.py [-h] [--preprocess {true, false}] [--aclimdb_path ACLIMDB_PATH]
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
[--ckpt_path CKPT_PATH] [--pre_trained PRE_TRAINING]
[--device_target {GPU, CPU}]
Mindspore LSTM Example
options:
-h, --help # show this help message and exit
--preprocess {true, false} # whether to preprocess data.
--aclimdb_path ACLIMDB_PATH # path where the dataset is stored.
--glove_path GLOVE_PATH # path where the GloVe is stored.
--preprocess_path PREPROCESS_PATH # path where the pre-process data is stored.
--ckpt_path CKPT_PATH # the path to save the checkpoint file.
--pre_trained # the pretrained checkpoint file path.
--device_target # the target device to run, support "GPU", "CPU". Default: "GPU".
```
### Running Options
```python
config.py:
num_classes # classes num
learning_rate # value of learning rate
momentum # value of momentum
num_epochs # epoch size
batch_size # batch size of input dataset
embed_size # the size of each embedding vector
num_hiddens # number of features of hidden layer
num_layers # number of layers of stacked LSTM
bidirectional # specifies whether it is a bidirectional LSTM
save_checkpoint_steps # steps for saving checkpoint files
```
### Network Parameters
## [Dataset Preparation](#contents)
- Download the dataset aclImdb_v1. - Download the dataset aclImdb_v1.
> Unzip the aclImdb_v1 dataset to any path you want and the folder structure should be as follows: > Unzip the aclImdb_v1 dataset to any path you want and the folder structure should be as follows:
@ -28,75 +144,79 @@ This example is for LSTM model training and evaluation.
> └── glove.6B.50d.txt > └── glove.6B.50d.txt
> ``` > ```
> Adding a new line at the beginning of the file which named `glove.6B.300d.txt`. > Adding a new line at the beginning of the file which named `glove.6B.300d.txt`.
> It means reading a total of 400,000 words, each represented by a 300-latitude word vector. > It means reading a total of 400,000 words, each represented by a 300-latitude word vector.
> ``` > ```
> 400000 300 > 400000 300
> ``` > ```
## Running the Example ## [Training Process](#contents)
### Training - Set options in `config.py`, including learning rate and network hyperparameters.
``` - Run `sh run_train_gpu.sh` for training.
python train.py --preprocess=true --aclimdb_path=your_imdb_path --glove_path=your_glove_path > out.train.log 2>&1 &
```
The python command above will run in the background, you can view the results through the file `out.train.log`.
After training, you'll get some checkpoint files under the script folder by default. ``` bash
bash run_train_gpu.sh 0 ./aclimdb ./glove_dir
```
You will get the loss value as following: The above shell script will run distribute training in the background. You will get the loss value as following:
``` ```shell
# grep "loss is " out.train.log # grep "loss is " log.txt
epoch: 1 step: 390, loss is 0.6003723 epoch: 1 step: 390, loss is 0.6003723
epcoh: 2 step: 390, loss is 0.35312173 epcoh: 2 step: 390, loss is 0.35312173
... ...
``` ```
### Evaluation
``` ## [Evaluation Process](#contents)
python eval.py --ckpt_path=./lstm-20-390.ckpt > out.eval.log 2>&1 &
```
The above python command will run in the background, you can view the results through the file `out.eval.log`.
You will get the accuracy as following: - Run `bash run_eval_gpu.sh` for evaluation.
```
# grep "acc" out.eval.log
result: {'acc': 0.83}
```
## Usage: ``` bash
bash run_eval_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt
```
### Training # [Model Description](#contents)
``` ## [Performance](#contents)
usage: train.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH]
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
[--ckpt_path CKPT_PATH] [--pre_trained PRE_TRAINED]
[--device_target {GPU,CPU}]
parameters/options: ### Training Performance
--preprocess whether to preprocess data.
--aclimdb_path path where the dataset is stored.
--glove_path path where the GloVe is stored.
--preprocess_path path where the pre-process data is stored.
--ckpt_path the path to save the checkpoint file.
--pre_trained the pretrained checkpoint file path.
--device_target the target device to run, support "GPU", "CPU".
```
### Evaluation | Parameters | LSTM |
| -------------------------- | -------------------------------------------------------------- |
| Resource | Tesla V100-SMX2-16GB |
| uploaded Date | 08/06/2020 (month/day/year) |
| MindSpore Version | 0.6.0-beta |
| Dataset | aclimdb_v1 |
| Training Parameters | epoch=20, batch_size=64 |
| Optimizer | Momentum |
| Loss Function | Softmax Cross Entropy |
| Speed | 1022 (1pcs) |
| Loss | 0.12 |
| Params (M) | 6.45 |
| Checkpoint for inference | 292.9M (.ckpt file) |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm |
```
usage: eval.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH]
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
[--ckpt_path CKPT_PATH] [--device_target {GPU,CPU}]
parameters/options: ### Evaluation Performance
--preprocess whether to preprocess data.
--aclimdb_path path where the dataset is stored. | Parameters | LSTM |
--glove_path path where the GloVe is stored. | ------------------- | --------------------------- |
--preprocess_path path where the pre-process data is stored. | Resource | Tesla V100-SMX2-16GB |
--ckpt_path the checkpoint file path used to evaluate model. | uploaded Date | 08/06/2020 (month/day/year) |
--device_target the target device to run, support "GPU", "CPU". | MindSpore Version | 0.6.0-beta |
``` | Dataset | aclimdb_v1 |
| batch_size | 64 |
| Accuracy | 84% |
# [Description of Random Situation](#contents)
There are three random situations:
- Shuffle of the dataset.
- Initialization of some model weights.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -0,0 +1,40 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "bash run_train_gpu.sh DEVICE_ID ACLIMDB_DIR GLOVE_DIR CKPT_FILE"
echo "for example: bash run_train_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt"
echo "=============================================================================================================="
DEVICE_ID=$1
ACLIMDB_DIR=$2
GLOVE_DIR=$3
CKPT_FILE=$4
export CUDA_VISIBLE_DEVICES=$DEVICE_ID
mkdir -p ms_log
CUR_DIR=`pwd`
export GLOG_log_dir=${CUR_DIR}/ms_log
export GLOG_logtostderr=0
python eval.py \
--device_target="GPU" \
--aclimdb_path=$ACLIMDB_DIR \
--glove_path=$GLOVE_DIR \
--preprocess=false \
--preprocess_path=./preprocess \
--ckpt_path=$CKPT_FILE > log.txt 2>&1 &

View File

@ -0,0 +1,38 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "bash run_train_gpu.sh DEVICE_ID ACLIMDB_DIR GLOVE_DIR"
echo "for example: bash run_train_gpu.sh 0 ./aclimdb ./glove_dir"
echo "=============================================================================================================="
DEVICE_ID=$1
ACLIMDB_DIR=$2
GLOVE_DIR=$3
export CUDA_VISIBLE_DEVICES=$DEVICE_ID
mkdir -p ms_log
CUR_DIR=`pwd`
export GLOG_log_dir=${CUR_DIR}/ms_log
export GLOG_logtostderr=0
python train.py \
--device_target="GPU" \
--aclimdb_path=$ACLIMDB_DIR \
--glove_path=$GLOVE_DIR \
--preprocess=true \
--preprocess_path=./preprocess > log.txt 2>&1 &