forked from mindspore-Ecosystem/mindspore
resnext50 readme normalize
This commit is contained in:
parent
37f78ec3e7
commit
a5c16fc4ac
|
@ -1,23 +1,78 @@
|
||||||
# ResNext50 Example
|
# Contents
|
||||||
|
|
||||||
## Description
|
- [ResNeXt50 Description](#resnext50-description)
|
||||||
|
- [Model Architecture](#model-architecture)
|
||||||
|
- [Dataset](#dataset)
|
||||||
|
- [Features](#features)
|
||||||
|
- [Mixed Precision](#mixed-precision)
|
||||||
|
- [Environment Requirements](#environment-requirements)
|
||||||
|
- [Quick Start](#quick-start)
|
||||||
|
- [Script Description](#script-description)
|
||||||
|
- [Script and Sample Code](#script-and-sample-code)
|
||||||
|
- [Script Parameters](#script-parameters)
|
||||||
|
- [Training Process](#training-process)
|
||||||
|
- [Evaluation Process](#evaluation-process)
|
||||||
|
- [Model Description](#model-description)
|
||||||
|
- [Performance](#performance)
|
||||||
|
- [Training Performance](#evaluation-performance)
|
||||||
|
- [Inference Performance](#evaluation-performance)
|
||||||
|
- [Description of Random Situation](#description-of-random-situation)
|
||||||
|
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||||
|
|
||||||
This is an example of training ResNext50 in MindSpore.
|
# [ResNeXt50 Description](#contents)
|
||||||
|
|
||||||
## Requirements
|
ResNeXt is a simple, highly modularized network architecture for image classification. It designs results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set in ResNeXt. This strategy exposes a new dimension, which we call “cardinality” (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width.
|
||||||
|
|
||||||
- Install [Mindspore](http://www.mindspore.cn/install/en).
|
[Paper](https://arxiv.org/abs/1611.05431): Xie S, Girshick R, Dollár, Piotr, et al. Aggregated Residual Transformations for Deep Neural Networks. 2016.
|
||||||
- Downlaod the dataset.
|
|
||||||
|
|
||||||
## Structure
|
# [Model architecture](#contents)
|
||||||
|
|
||||||
```shell
|
The overall network architecture of ResNeXt is show below:
|
||||||
|
|
||||||
|
[Link](https://arxiv.org/abs/1611.05431)
|
||||||
|
|
||||||
|
|
||||||
|
# [Dataset](#contents)
|
||||||
|
|
||||||
|
Dataset used: [imagenet](http://www.image-net.org/)
|
||||||
|
|
||||||
|
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||||
|
- Train: 120G, 1.2W images
|
||||||
|
- Test: 5G, 50000 images
|
||||||
|
- Data format: RGB images.
|
||||||
|
- Note: Data will be processed in src/dataset.py
|
||||||
|
|
||||||
|
|
||||||
|
# [Features](#contents)
|
||||||
|
|
||||||
|
## [Mixed Precision](#contents)
|
||||||
|
|
||||||
|
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||||
|
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||||
|
|
||||||
|
# [Environment Requirements](#contents)
|
||||||
|
|
||||||
|
- Hardware(Ascend/GPU)
|
||||||
|
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||||
|
- Framework
|
||||||
|
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||||
|
- For more information, please check the resources below:
|
||||||
|
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||||
|
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||||
|
|
||||||
|
# [Script description](#contents)
|
||||||
|
|
||||||
|
## [Script and sample code](#contents)
|
||||||
|
|
||||||
|
```python
|
||||||
.
|
.
|
||||||
└─resnext50
|
└─resnext50
|
||||||
├─README.md
|
├─README.md
|
||||||
├─scripts
|
├─scripts
|
||||||
├─run_standalone_train.sh # launch standalone training(1p)
|
├─run_standalone_train.sh # launch standalone training for ascend(1p)
|
||||||
├─run_distribute_train.sh # launch distributed training(8p)
|
├─run_distribute_train.sh # launch distributed training for ascend(8p)
|
||||||
|
├─run_standalone_train_for_gpu.sh # launch standalone training for gpu(1p)
|
||||||
|
├─run_distribute_train_for_gpu.sh # launch distributed training for gpu(8p)
|
||||||
└─run_eval.sh # launch evaluating
|
└─run_eval.sh # launch evaluating
|
||||||
├─src
|
├─src
|
||||||
├─backbone
|
├─backbone
|
||||||
|
@ -44,9 +99,9 @@ This is an example of training ResNext50 in MindSpore.
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## Parameter Configuration
|
## [Script Parameters](#contents)
|
||||||
|
|
||||||
Parameters for both training and evaluating can be set in config.py
|
Parameters for both training and evaluating can be set in config.py.
|
||||||
|
|
||||||
```
|
```
|
||||||
"image_height": '224,224' # image size
|
"image_height": '224,224' # image size
|
||||||
|
@ -74,17 +129,29 @@ Parameters for both training and evaluating can be set in config.py
|
||||||
"group_size": 1 # world size of distributed
|
"group_size": 1 # world size of distributed
|
||||||
```
|
```
|
||||||
|
|
||||||
## Running the example
|
## [Training Process](#contents)
|
||||||
|
|
||||||
### Train
|
|
||||||
|
|
||||||
#### Usage
|
#### Usage
|
||||||
|
|
||||||
|
You can start training by python script:
|
||||||
|
|
||||||
```
|
```
|
||||||
|
python train.py --data_dir ~/imagenet/train/ --platform Ascend --is_distributed 0
|
||||||
|
```
|
||||||
|
|
||||||
|
or shell stript:
|
||||||
|
|
||||||
|
```
|
||||||
|
Ascend:
|
||||||
# distribute training example(8p)
|
# distribute training example(8p)
|
||||||
sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
||||||
# standalone training
|
# standalone training
|
||||||
sh run_standalone_train.sh DEVICE_ID DATA_PATH
|
sh run_standalone_train.sh DEVICE_ID DATA_PATH
|
||||||
|
GPU:
|
||||||
|
# distribute training example(8p)
|
||||||
|
sh run_distribute_train_for_gpu.sh DATA_PATH
|
||||||
|
# standalone training
|
||||||
|
sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_PATH
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Launch
|
#### Launch
|
||||||
|
@ -101,13 +168,19 @@ sh scripts/run_distribute_train_for_gpu.sh /dataset/train
|
||||||
sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
|
sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Result
|
|
||||||
|
|
||||||
You can find checkpoint file together with result in log.
|
You can find checkpoint file together with result in log.
|
||||||
|
|
||||||
### Evaluation
|
## [Evaluation Process](#contents)
|
||||||
|
|
||||||
#### Usage
|
### Usage
|
||||||
|
|
||||||
|
You can start training by python script:
|
||||||
|
|
||||||
|
```
|
||||||
|
python eval.py --data_dir ~/imagenet/val/ --platform Ascend --pretrained resnext.ckpt
|
||||||
|
```
|
||||||
|
|
||||||
|
or shell stript:
|
||||||
|
|
||||||
```
|
```
|
||||||
# Evaluation
|
# Evaluation
|
||||||
|
@ -122,8 +195,6 @@ PLATFORM is Ascend or GPU, default is Ascend.
|
||||||
sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt Ascend
|
sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt Ascend
|
||||||
```
|
```
|
||||||
|
|
||||||
> checkpoint can be produced in training process.
|
|
||||||
|
|
||||||
#### Result
|
#### Result
|
||||||
|
|
||||||
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
|
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
|
||||||
|
@ -132,3 +203,44 @@ Evaluation result will be stored in the scripts path. Under this, you can find r
|
||||||
acc=78.16%(TOP1)
|
acc=78.16%(TOP1)
|
||||||
acc=93.88%(TOP5)
|
acc=93.88%(TOP5)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
# [Model description](#contents)
|
||||||
|
|
||||||
|
## [Performance](#contents)
|
||||||
|
|
||||||
|
### Training Performance
|
||||||
|
|
||||||
|
| Parameters | ResNeXt50 | |
|
||||||
|
| -------------------------- | ---------------------------------------------------------- | ------------------------- |
|
||||||
|
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
|
||||||
|
| uploaded Date | 06/30/2020 | 07/23/2020 |
|
||||||
|
| MindSpore Version | 0.5.0 | 0.6.0 |
|
||||||
|
| Dataset | ImageNet | ImageNet |
|
||||||
|
| Training Parameters | src/config.py | src/config.py |
|
||||||
|
| Optimizer | Momentum | Momentum |
|
||||||
|
| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
|
||||||
|
| Loss | 1.76592 | 1.8965 |
|
||||||
|
| Accuracy | 78%(TOP1) | 77.8%(TOP1) |
|
||||||
|
| Total time | 7.8 h 8ps | 21.5 h 8ps |
|
||||||
|
| Checkpoint for Fine tuning | 192 M(.ckpt file) | 192 M(.ckpt file) |
|
||||||
|
|
||||||
|
#### Inference Performance
|
||||||
|
|
||||||
|
| Parameters | | | |
|
||||||
|
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
|
||||||
|
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
|
||||||
|
| uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 |
|
||||||
|
| MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 |
|
||||||
|
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
||||||
|
| batch_size | 1 | 1 | 1 |
|
||||||
|
| outputs | probability | probability | probability |
|
||||||
|
| Accuracy | acc=78.16%(TOP1) | acc=78.05%(TOP1) | |
|
||||||
|
|
||||||
|
|
||||||
|
# [Description of Random Situation](#contents)
|
||||||
|
|
||||||
|
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
||||||
|
|
||||||
|
# [ModelZoo Homepage](#contents)
|
||||||
|
|
||||||
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||||
|
|
Loading…
Reference in New Issue