forked from mindspore-Ecosystem/mindspore
resnext50 readme normalize
This commit is contained in:
parent
37f78ec3e7
commit
a5c16fc4ac
|
@ -1,23 +1,78 @@
|
|||
# ResNext50 Example
|
||||
# Contents
|
||||
|
||||
## Description
|
||||
- [ResNeXt50 Description](#resnext50-description)
|
||||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Features](#features)
|
||||
- [Mixed Precision](#mixed-precision)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training Process](#training-process)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#evaluation-performance)
|
||||
- [Inference Performance](#evaluation-performance)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
This is an example of training ResNext50 in MindSpore.
|
||||
# [ResNeXt50 Description](#contents)
|
||||
|
||||
## Requirements
|
||||
ResNeXt is a simple, highly modularized network architecture for image classification. It designs results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set in ResNeXt. This strategy exposes a new dimension, which we call “cardinality” (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width.
|
||||
|
||||
- Install [Mindspore](http://www.mindspore.cn/install/en).
|
||||
- Downlaod the dataset.
|
||||
[Paper](https://arxiv.org/abs/1611.05431): Xie S, Girshick R, Dollár, Piotr, et al. Aggregated Residual Transformations for Deep Neural Networks. 2016.
|
||||
|
||||
## Structure
|
||||
# [Model architecture](#contents)
|
||||
|
||||
```shell
|
||||
The overall network architecture of ResNeXt is show below:
|
||||
|
||||
[Link](https://arxiv.org/abs/1611.05431)
|
||||
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used: [imagenet](http://www.image-net.org/)
|
||||
|
||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||
- Train: 120G, 1.2W images
|
||||
- Test: 5G, 50000 images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
|
||||
# [Features](#contents)
|
||||
|
||||
## [Mixed Precision](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
||||
# [Script description](#contents)
|
||||
|
||||
## [Script and sample code](#contents)
|
||||
|
||||
```python
|
||||
.
|
||||
└─resnext50
|
||||
├─README.md
|
||||
├─scripts
|
||||
├─run_standalone_train.sh # launch standalone training(1p)
|
||||
├─run_distribute_train.sh # launch distributed training(8p)
|
||||
├─run_standalone_train.sh # launch standalone training for ascend(1p)
|
||||
├─run_distribute_train.sh # launch distributed training for ascend(8p)
|
||||
├─run_standalone_train_for_gpu.sh # launch standalone training for gpu(1p)
|
||||
├─run_distribute_train_for_gpu.sh # launch distributed training for gpu(8p)
|
||||
└─run_eval.sh # launch evaluating
|
||||
├─src
|
||||
├─backbone
|
||||
|
@ -44,9 +99,9 @@ This is an example of training ResNext50 in MindSpore.
|
|||
|
||||
```
|
||||
|
||||
## Parameter Configuration
|
||||
## [Script Parameters](#contents)
|
||||
|
||||
Parameters for both training and evaluating can be set in config.py
|
||||
Parameters for both training and evaluating can be set in config.py.
|
||||
|
||||
```
|
||||
"image_height": '224,224' # image size
|
||||
|
@ -74,17 +129,29 @@ Parameters for both training and evaluating can be set in config.py
|
|||
"group_size": 1 # world size of distributed
|
||||
```
|
||||
|
||||
## Running the example
|
||||
|
||||
### Train
|
||||
## [Training Process](#contents)
|
||||
|
||||
#### Usage
|
||||
|
||||
You can start training by python script:
|
||||
|
||||
```
|
||||
# distribute training example(8p)
|
||||
sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
||||
# standalone training
|
||||
sh run_standalone_train.sh DEVICE_ID DATA_PATH
|
||||
python train.py --data_dir ~/imagenet/train/ --platform Ascend --is_distributed 0
|
||||
```
|
||||
|
||||
or shell stript:
|
||||
|
||||
```
|
||||
Ascend:
|
||||
# distribute training example(8p)
|
||||
sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
||||
# standalone training
|
||||
sh run_standalone_train.sh DEVICE_ID DATA_PATH
|
||||
GPU:
|
||||
# distribute training example(8p)
|
||||
sh run_distribute_train_for_gpu.sh DATA_PATH
|
||||
# standalone training
|
||||
sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_PATH
|
||||
```
|
||||
|
||||
#### Launch
|
||||
|
@ -101,13 +168,19 @@ sh scripts/run_distribute_train_for_gpu.sh /dataset/train
|
|||
sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
You can find checkpoint file together with result in log.
|
||||
|
||||
### Evaluation
|
||||
## [Evaluation Process](#contents)
|
||||
|
||||
#### Usage
|
||||
### Usage
|
||||
|
||||
You can start training by python script:
|
||||
|
||||
```
|
||||
python eval.py --data_dir ~/imagenet/val/ --platform Ascend --pretrained resnext.ckpt
|
||||
```
|
||||
|
||||
or shell stript:
|
||||
|
||||
```
|
||||
# Evaluation
|
||||
|
@ -122,8 +195,6 @@ PLATFORM is Ascend or GPU, default is Ascend.
|
|||
sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt Ascend
|
||||
```
|
||||
|
||||
> checkpoint can be produced in training process.
|
||||
|
||||
#### Result
|
||||
|
||||
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
|
||||
|
@ -131,4 +202,45 @@ Evaluation result will be stored in the scripts path. Under this, you can find r
|
|||
```
|
||||
acc=78.16%(TOP1)
|
||||
acc=93.88%(TOP5)
|
||||
```
|
||||
```
|
||||
|
||||
# [Model description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Training Performance
|
||||
|
||||
| Parameters | ResNeXt50 | |
|
||||
| -------------------------- | ---------------------------------------------------------- | ------------------------- |
|
||||
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
|
||||
| uploaded Date | 06/30/2020 | 07/23/2020 |
|
||||
| MindSpore Version | 0.5.0 | 0.6.0 |
|
||||
| Dataset | ImageNet | ImageNet |
|
||||
| Training Parameters | src/config.py | src/config.py |
|
||||
| Optimizer | Momentum | Momentum |
|
||||
| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
|
||||
| Loss | 1.76592 | 1.8965 |
|
||||
| Accuracy | 78%(TOP1) | 77.8%(TOP1) |
|
||||
| Total time | 7.8 h 8ps | 21.5 h 8ps |
|
||||
| Checkpoint for Fine tuning | 192 M(.ckpt file) | 192 M(.ckpt file) |
|
||||
|
||||
#### Inference Performance
|
||||
|
||||
| Parameters | | | |
|
||||
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
|
||||
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
|
||||
| uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 |
|
||||
| MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 |
|
||||
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
||||
| batch_size | 1 | 1 | 1 |
|
||||
| outputs | probability | probability | probability |
|
||||
| Accuracy | acc=78.16%(TOP1) | acc=78.05%(TOP1) | |
|
||||
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
Loading…
Reference in New Issue