!1339 add epsilon parameter for layernorm

Merge pull request !1339 from JichenZhao/layernorm_mean_var_shape
This commit is contained in:
mindspore-ci-bot 2020-05-23 15:58:44 +08:00 committed by Gitee
commit a510ecc8ff
7 changed files with 23 additions and 13 deletions

View File

@ -368,6 +368,7 @@ bool TbeKernelJsonCreator::GenTbeAttrJson(const std::shared_ptr<AnfNode> &anf_no
MS_EXCEPTION_IF_NULL(op_info);
MS_EXCEPTION_IF_NULL(attrs_json);
auto attrs_ptr = op_info->attrs_ptr();
std::string op_name = AnfAlgo::GetCNodeName(anf_node);
if (TbeAdapter::RunAttrPass(anf_node, attrs_ptr, attrs_json)) {
return true;
}
@ -377,6 +378,9 @@ bool TbeKernelJsonCreator::GenTbeAttrJson(const std::shared_ptr<AnfNode> &anf_no
std::string attr_name = attr_ptr->name();
nlohmann::json attr_obj;
attr_obj["name"] = attr_name;
if (op_name == "LayerNorm" && attr_obj["name"] == "epsilon" && creater_type_ == OP_SELECT_FORMAT) {
continue;
}
if (primitive->GetAttr(attr_name) != nullptr) {
auto value = primitive->GetAttr(attr_name);
std::string type = attr_ptr->type();

View File

@ -1084,7 +1084,8 @@ OUTPUT_MAP(SGD) = {{0, OUTPUT_DESC(parameters)}};
// LayerNorm
INPUT_MAP(LayerNorm) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(gamma)}, {3, INPUT_DESC(beta)}};
ATTR_MAP(LayerNorm) = {{"begin_norm_axis", ATTR_DESC(begin_norm_axis, AnyTraits<int>())},
{"begin_params_axis", ATTR_DESC(begin_params_axis, AnyTraits<int>())}};
{"begin_params_axis", ATTR_DESC(begin_params_axis, AnyTraits<int>())},
{"epsilon", ATTR_DESC(epsilon, AnyTraits<float>())}};
OUTPUT_MAP(LayerNorm) = {{0, OUTPUT_DESC(y)}, {1, OUTPUT_DESC(mean)}, {2, OUTPUT_DESC(variance)}};
// LayerNormGrad

View File

@ -449,6 +449,7 @@ class LayerNorm(Cell):
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
The values of str refer to the function `initializer` including 'zeros', 'ones', 'xavier_uniform',
'he_uniform', etc. Default: 'zeros'.
epsilon (float): A value added to the denominator for numerical stability. Default: 1e-7.
Inputs:
- **input_x** (Tensor) - The shape of 'input_x' is :math:`(x_1, x_2, ..., x_R)`,
@ -469,6 +470,7 @@ class LayerNorm(Cell):
begin_params_axis=-1,
gamma_init='ones',
beta_init='zeros',
epsilon=1e-7
):
super(LayerNorm, self).__init__()
if not isinstance(normalized_shape, (tuple, list)):
@ -477,11 +479,13 @@ class LayerNorm(Cell):
self.normalized_shape = normalized_shape
self.begin_norm_axis = begin_norm_axis
self.begin_params_axis = begin_params_axis
self.epsilon = epsilon
self.gamma = Parameter(initializer(
gamma_init, normalized_shape), name="gamma")
self.beta = Parameter(initializer(
beta_init, normalized_shape), name="beta")
self.layer_norm = P.LayerNorm(begin_norm_axis=self.begin_norm_axis, begin_params_axis=self.begin_params_axis)
self.layer_norm = P.LayerNorm(begin_norm_axis=self.begin_norm_axis, begin_params_axis=self.begin_params_axis,
epsilon=self.epsilon)
def construct(self, input_x):
y, _, _ = self.layer_norm(input_x, self.gamma, self.beta)

View File

@ -198,14 +198,12 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
Scores Tensor :math:`x` is of shape :math:`(N, C)` and target Tensor :math:`t` is a
Tensor of shape :math:`(N, C)` which contains one-hot labels of length :math:`C`.
For each batch :math:`N_i`, the loss is given as:
For each instance :math:`N_i`, the loss is given as:
.. math::
\ell(x_i, t_i) = -w_{t_i} \log\left(\frac{\exp(x_{t_i})}{\sum_j \exp(x_j)}\right)
= w_{t_i} \left(-x_{t_i} + \log\left(\sum_j \exp(x_i)\right)\right),
where :math:`x_i` is a 1D score Tensor, :math:`t_i` is the target class and
:math:`w` is a weight Tensor to generate weighted loss for each class. When not specified,
weight Tensor is set to be None and weight is the same (:math:`1`) for all class.
\ell(x_i, t_i) = - \log\left(\frac{\exp(x_{t_i})}{\sum_j \exp(x_j)}\right)
= -x_{t_i} + \log\left(\sum_j \exp(x_i)\right),
where :math:`x_i` is a 1D score Tensor, :math:`t_i` is a scalar.
Note:
While the target classes are mutually exclusive, i.e., only one class is positive in the target, the predicted
@ -221,8 +219,8 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
num_classes (int): The number of classes in the task. It is a optional input Default: 2.
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`.
- **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`. If `sparse` is True, The type of
- **logits** (Tensor) - Tensor of shape (N, C).
- **labels** (Tensor) - Tensor of shape (N, ). If `sparse` is True, The type of
`labels` is mindspore.int32. If `sparse` is False, the type of `labels` is same as the type of `logits`.
Outputs:

View File

@ -25,6 +25,7 @@ layer_norm_op_info = TBERegOp("LayerNorm") \
.partial_flag(True) \
.attr("begin_norm_axis", "required", "int", "all") \
.attr("begin_params_axis", "required", "int", "all") \
.attr("epsilon", "optional", "float", "all") \
.input(0, "x", False, "required", "all") \
.input(1, "gamma", False, "required", "all") \
.input(2, "beta", False, "required", "all") \

View File

@ -1853,6 +1853,7 @@ class LayerNorm(Primitive):
the value should be in [-1, rank(input)). Default: 1.
begin_params_axis (int): The begin axis of the parameter input (`gamma`, `beta`) to
apply LayerNorm, the value should be in [-1, rank(input)). Default: 1.
epsilon (float): A value added to the denominator for numerical stability. Default: 1e-7.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
@ -1881,9 +1882,10 @@ class LayerNorm(Primitive):
"""
@prim_attr_register
def __init__(self, begin_norm_axis=1, begin_params_axis=1):
def __init__(self, begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7):
validator.check_value_type('begin_norm_axis', begin_norm_axis, [int], self.name)
validator.check_value_type('begin_params_axis', begin_params_axis, [int], self.name)
validator.check_value_type('epsilon', epsilon, [float], self.name)
class L2Normalize(PrimitiveWithInfer):

View File

@ -171,8 +171,8 @@ def test_bert_tdt():
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
loss_value = np.array(callback.loss_list)
expect_loss_value = [12.207201, 11.980862, 11.984737, 11.879344, 11.832838, 12.411388,
12.009449, 12.621273, 12.223175, 12.427313]
expect_loss_value = [12.207198, 11.980881, 11.984844, 11.879381, 11.832978, 12.411333, 12.009284,
12.621277, 12.223178, 12.427385]
print("loss value: {}".format(loss_value))
assert np.allclose(loss_value, expect_loss_value, 0, 0.0005)