forked from mindspore-Ecosystem/mindspore
support BatchToSpaceND and SpaceToBatchND
This commit is contained in:
parent
4ce1cf4529
commit
a45dfca142
|
@ -82,6 +82,8 @@ static std::map<string, string> tbe_func_adapter_map = {
|
|||
{"argmax", "arg_max_d"},
|
||||
{"space_to_batch", "space_to_batch_d"},
|
||||
{"batch_to_space", "batch_to_space_d"},
|
||||
{"space_to_batch_nd", "space_to_batch_nd_d"},
|
||||
{"batch_to_space_nd", "batch_to_space_nd_d"},
|
||||
{"resize_bilinear", "resize_bilinear_v2_d"},
|
||||
{"resize_bilinear_grad", "resize_bilinear_v2_grad"},
|
||||
{"adam", "apply_adam"},
|
||||
|
|
|
@ -536,3 +536,23 @@ def get_bprop_batch_to_space(self):
|
|||
dx = batch_to_space_grad(dout)
|
||||
return (dx,)
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.SpaceToBatchND)
|
||||
def get_bprop_space_to_batch_nd(self):
|
||||
"""Generate bprop for SpaceToBatchND"""
|
||||
space_to_batch_nd_grad = P.BatchToSpaceND(self.block_shape, self.paddings)
|
||||
def bprop(x, out, dout):
|
||||
dx = space_to_batch_nd_grad(dout)
|
||||
return (dx,)
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.BatchToSpaceND)
|
||||
def get_bprop_batch_to_space_nd(self):
|
||||
"""Generate bprop for BatchToSpaceND"""
|
||||
batch_to_space_nd_grad = P.SpaceToBatchND(self.block_shape, self.crops)
|
||||
def bprop(x, out, dout):
|
||||
dx = batch_to_space_nd_grad(dout)
|
||||
return (dx,)
|
||||
return bprop
|
||||
|
|
|
@ -200,3 +200,5 @@ from .reduce_prod import _reduce_prod_tbe
|
|||
from .flatten_grad import _flatten_grad_tbe
|
||||
from .scatter_add import _scatter_add_tbe
|
||||
from .atan2 import _atan2_tbe
|
||||
from .batch_to_space_nd import _batch_to_space_nd_tbe
|
||||
from .space_to_batch_nd import _space_to_batch_nd_tbe
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""BatchToSpaceND op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
batch_to_space_nd_op_info = TBERegOp("BatchToSpaceND") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("batch_to_space_nd_d.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("batch_to_space_nd_d") \
|
||||
.partial_flag(True) \
|
||||
.attr("block_shape", "required", "listInt", "all") \
|
||||
.attr("crops", "required", "listListInt", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(batch_to_space_nd_op_info)
|
||||
def _batch_to_space_nd_tbe():
|
||||
"""BatchToSpaceND TBE register"""
|
||||
return
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""SpaceToBatchND op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
space_to_batch_nd_op_info = TBERegOp("SpaceToBatchND") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("space_to_batch_nd_d.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("space_to_batch_nd_d") \
|
||||
.partial_flag(True) \
|
||||
.attr("block_shape", "required", "listInt", "all") \
|
||||
.attr("paddings", "required", "listListInt", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(space_to_batch_nd_op_info)
|
||||
def _space_to_batch_nd_tbe():
|
||||
"""SpaceToBatchND TBE register"""
|
||||
return
|
|
@ -29,7 +29,8 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
|
|||
Shape, Size, Slice, Split,
|
||||
Squeeze, StridedSlice, Tile,
|
||||
Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin,
|
||||
UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace)
|
||||
UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace,
|
||||
SpaceToBatchND, BatchToSpaceND)
|
||||
from .comm_ops import (AllGather, AllReduce, _AlltoAll, ReduceScatter, Broadcast,
|
||||
_MirrorOperator, ReduceOp, _VirtualDataset,
|
||||
_VirtualDiv, _GetTensorSlice)
|
||||
|
@ -260,6 +261,8 @@ __all__ = [
|
|||
"Atan2",
|
||||
"ApplyRMSProp",
|
||||
"ApplyCenteredRMSProp",
|
||||
"SpaceToBatchND",
|
||||
"BatchToSpaceND",
|
||||
"SquareSumAll"
|
||||
]
|
||||
|
||||
|
|
|
@ -2491,3 +2491,163 @@ class BatchToSpace(PrimitiveWithInfer):
|
|||
f'block_size_prod {block_size_prod}')
|
||||
out_shape[0] = out_shape[0] // block_size_prod
|
||||
return out_shape
|
||||
|
||||
|
||||
class SpaceToBatchND(PrimitiveWithInfer):
|
||||
r"""
|
||||
Divide spatial dimensions into blocks and combine the block size with the original batch.
|
||||
|
||||
This operation will divide spatial dimensions (H, W) into blocks with block_shape, the output tensor's H and W
|
||||
dimension is the corresponding number of blocks after division. The output tensor's batch dimension is the
|
||||
product of the original batch and the product of block_shape. Prior to division into blocks, the spatial dimensions
|
||||
of the input are zero padded according to paddings if necessary.
|
||||
|
||||
Args:
|
||||
block_shape (Union[list(int), tuple(int)]): The block shape of dividing block with all value >= 1.
|
||||
The length of block_shape is M correspoding to the number of spatial dimensions.
|
||||
paddings (list): The padding value for H and W dimension, containing M sub list, each containing 2 int value.
|
||||
All values must be >= 0. paddings[i] specifies the paddings for spatial dimension i, which corresponds to
|
||||
input dimension i+2. It is required that input_shape[i+2]+paddings[i][0]+paddings[i][1] is divisible
|
||||
by block_shape[i].
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
||||
Outputs:
|
||||
Tensor, the output tensor with the same type as input. Assume input shape is :math:`(n, c, h, w)` with
|
||||
:math:`block\_shape` and :math:`padddings`. The output tensor shape will be :math:`(n', c', h', w')`, where
|
||||
|
||||
:math:`n' = n*(block\_shape[0]*block\_shape[1])`
|
||||
|
||||
:math:`c' = c`
|
||||
|
||||
:math:`h' = (h+paddings[0][0]+paddings[0][1])//block\_shape[0]`
|
||||
|
||||
:math:`w' = (w+paddings[1][0]+paddings[1][1])//block\_shape[1]`
|
||||
|
||||
Examples:
|
||||
>>> block_shape = [2, 2]
|
||||
>>> paddings = [[0, 0], [0, 0]]
|
||||
>>> space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
|
||||
>>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
|
||||
>>> space_to_batch_nd(input_x)
|
||||
[[[[1.]]], [[[2.]]], [[[3.]]], [[[4.]]]]
|
||||
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, block_shape, paddings):
|
||||
"""Init SpaceToBatchND"""
|
||||
validator.check_value_type('block_shape type', block_shape, [list, tuple], self.name)
|
||||
validator.check('block_shape shape', len(np.array(block_shape).shape), '', 1, Rel.EQ, self.name)
|
||||
block_rank = len(block_shape)
|
||||
|
||||
for elem in block_shape:
|
||||
validator.check('block_shape element', elem, '', 1, Rel.GE, self.name)
|
||||
self.block_shape = block_shape
|
||||
|
||||
validator.check('paddings shape', np.array(paddings).shape, '', (block_rank, 2), Rel.EQ, self.name)
|
||||
for elem in itertools.chain(*paddings):
|
||||
validator.check_integer('paddings element', elem, 0, Rel.GE, self.name)
|
||||
validator.check_value_type('paddings element', elem, [int], self.name)
|
||||
self.paddings = paddings
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'input_x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
x_rank = len(x_shape)
|
||||
out_shape = copy.deepcopy(x_shape)
|
||||
|
||||
block_shape_prod = 1
|
||||
for i in range(x_rank - 2):
|
||||
padded = out_shape[i + 2] + self.paddings[i][0] + \
|
||||
self.paddings[i][1]
|
||||
if padded % self.block_shape[i] != 0:
|
||||
raise ValueError(f'For \'{self.name}\' padded[{i}] {padded} should be divisible by '
|
||||
f'block_shape[{i}] {self.block_shape[i]}')
|
||||
out_shape[i + 2] = padded // self.block_shape[i]
|
||||
block_shape_prod = block_shape_prod * self.block_shape[i]
|
||||
out_shape[0] *= block_shape_prod
|
||||
return out_shape
|
||||
|
||||
|
||||
class BatchToSpaceND(PrimitiveWithInfer):
|
||||
r"""
|
||||
Divide batch dimension with blocks and interleaves these blocks back into spatial dimensions.
|
||||
|
||||
This operation will divide batch dimension N into blocks with block_shape, the output tensor's N dimension
|
||||
is the corresponding number of blocks after division. The output tensor's H, W dimension is product of original H, W
|
||||
dimension and block_shape with given amount to crop from dimension, respectively.
|
||||
|
||||
Args:
|
||||
block_shape (Union[list(int), tuple(int)]): The block shape of dividing block with all value >= 1.
|
||||
The length of block_shape is M correspoding to the number of spatial dimensions.
|
||||
crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value.
|
||||
All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to
|
||||
input dimension i+2. It is required that input_shape[i+2]*block_size[i] >= crops[i][0]+crops[i][1].
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
||||
Outputs:
|
||||
Tensor, the output tensor with the same type as input. Assume input shape is (n, c, h, w) with block_shape
|
||||
and crops. The output shape will be (n', c', h', w'), where
|
||||
|
||||
:math:`n' = n//(block\_shape[0]*block\_shape[1])`
|
||||
|
||||
:math:`c' = c`
|
||||
|
||||
:math:`h' = h*block\_shape[0]-crops[0][0]-crops[0][1]`
|
||||
|
||||
:math:`w' = w*block\_shape[1]-crops[1][0]-crops[1][1]`
|
||||
|
||||
Examples:
|
||||
>>> block_shape = [2, 2]
|
||||
>>> crops = [[0, 0], [0, 0]]
|
||||
>>> batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
|
||||
>>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
|
||||
>>> output = batch_to_space_nd(input_x)
|
||||
[[[[1., 2.], [3., 4.]]]]
|
||||
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, block_shape, crops):
|
||||
"""Init BatchToSpaceND"""
|
||||
validator.check_value_type('block_shape type', block_shape, [list, tuple], self.name)
|
||||
validator.check('block_shape shape', len(np.array(block_shape).shape), '', 1, Rel.EQ, self.name)
|
||||
block_rank = len(block_shape)
|
||||
|
||||
for elem in block_shape:
|
||||
validator.check('block_shape element', elem, '', 1, Rel.GE, self.name)
|
||||
self.block_shape = block_shape
|
||||
|
||||
validator.check('crops shape', np.array(crops).shape, '', (block_rank, 2), Rel.EQ, self.name)
|
||||
for elem in itertools.chain(*crops):
|
||||
validator.check_integer('crops element', elem, 0, Rel.GE, self.name)
|
||||
validator.check_value_type('crops element', elem, [int], self.name)
|
||||
self.crops = crops
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'input_x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
x_rank = len(x_shape)
|
||||
out_shape = copy.deepcopy(x_shape)
|
||||
|
||||
block_shape_prod = 1
|
||||
for i in range(x_rank - 2):
|
||||
block_shape_prod = block_shape_prod * self.block_shape[i]
|
||||
x_block_prod = out_shape[i + 2] * self.block_shape[i]
|
||||
crops_sum = self.crops[i][0] + self.crops[i][1]
|
||||
validator.check("x block shape prod", x_block_prod, 'crops sum', crops_sum, Rel.GT, self.name)
|
||||
out_shape[i + 2] = x_block_prod - crops_sum
|
||||
|
||||
if out_shape[0] % block_shape_prod != 0:
|
||||
raise ValueError(f'For \'{self.name}\' input_x dimension 0 {out_shape[0]} should be divisible by '
|
||||
f'block_shape_prod {block_shape_prod}')
|
||||
out_shape[0] = out_shape[0] // block_shape_prod
|
||||
return out_shape
|
||||
|
|
|
@ -264,6 +264,27 @@ class DepthToSpaceNet(Cell):
|
|||
return self.depth_to_space(x)
|
||||
|
||||
|
||||
class BatchToSpaceNDNet(Cell):
|
||||
def __init__(self):
|
||||
super(BatchToSpaceNDNet, self).__init__()
|
||||
block_shape = [2, 2]
|
||||
crops = [[0, 0], [0, 0]]
|
||||
self.batch_to_space_nd = P.BatchToSpaceND(block_shape, crops)
|
||||
|
||||
def construct(self, x):
|
||||
return self.batch_to_space_nd(x)
|
||||
|
||||
|
||||
class SpaceToBatchNDNet(Cell):
|
||||
def __init__(self):
|
||||
super(SpaceToBatchNDNet, self).__init__()
|
||||
block_shape = [2, 2]
|
||||
paddings = [[0, 0], [0, 0]]
|
||||
self.space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings)
|
||||
|
||||
def construct(self, x):
|
||||
return self.space_to_batch_nd(x)
|
||||
|
||||
test_case_array_ops = [
|
||||
('CustNet1', {
|
||||
'block': CustNet1(),
|
||||
|
@ -298,6 +319,12 @@ test_case_array_ops = [
|
|||
('DepthToSpaceNet', {
|
||||
'block': DepthToSpaceNet(),
|
||||
'desc_inputs': [Tensor(np.random.rand(1,12,1,1).astype(np.float16))]}),
|
||||
('SpaceToBatchNDNet', {
|
||||
'block': SpaceToBatchNDNet(),
|
||||
'desc_inputs': [Tensor(np.random.rand(1,1,2,2).astype(np.float16))]}),
|
||||
('BatchToSpaceNDNet', {
|
||||
'block': BatchToSpaceNDNet(),
|
||||
'desc_inputs': [Tensor(np.random.rand(4,1,1,1).astype(np.float16))]}),
|
||||
]
|
||||
|
||||
test_case_lists = [test_case_array_ops]
|
||||
|
|
Loading…
Reference in New Issue