forked from mindspore-Ecosystem/mindspore
[MSLITE][DEVELOP] add cpu fp32 op: crop_and_resize
This commit is contained in:
parent
b3ecba94c2
commit
9d9d2e1ff4
|
@ -57,13 +57,13 @@ int PrepareCropAndResizeBilinear(const int *input_shape, const float *boxes, con
|
|||
x_rights == NULL || y_bottom_weights == NULL || x_left_weights == NULL) {
|
||||
return NNACL_NULL_PTR;
|
||||
}
|
||||
int in_b = input_shape[0];
|
||||
int in_h = input_shape[1];
|
||||
int in_w = input_shape[2];
|
||||
int batch = output_shape[0];
|
||||
int new_height = output_shape[1];
|
||||
int new_width = output_shape[2];
|
||||
|
||||
for (int i = 0; i < in_b; i++) {
|
||||
for (int i = 0; i < batch; i++) {
|
||||
int b = box_idx[i];
|
||||
const float *box = boxes + b * 4;
|
||||
int start_h = box[0] * (in_h - 1);
|
||||
|
@ -145,10 +145,63 @@ int InterpCol(const float *bottom_line, const float *top_line, float *output, in
|
|||
return 0;
|
||||
}
|
||||
|
||||
void Bilinear(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
const int *y_bottom, const int *y_top, const int *x_left, const int *x_right,
|
||||
const float *y_bottom_weight, const float *x_left_weight, float *line0, float *line1, const int h_begin,
|
||||
const int h_end) {
|
||||
int in_w = input_shape[2];
|
||||
int in_c = input_shape[3];
|
||||
int new_width = output_shape[2];
|
||||
int h_stride = new_width * in_c;
|
||||
|
||||
bool cache_line_used[2] = {false, false};
|
||||
int cache_line_num[2] = {-1, -1};
|
||||
float *const cache_line_ptr[2] = {line0, line1};
|
||||
float *current_line_ptr[2] = {line0, line1};
|
||||
int current_line_num[2] = {-1, -1};
|
||||
|
||||
for (int h = h_begin; h < h_end; h++) {
|
||||
current_line_num[0] = y_bottom[h];
|
||||
current_line_num[1] = y_top[h];
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
cache_line_used[i] = false;
|
||||
}
|
||||
// search if we cached
|
||||
for (int j = 0; j < 2; j++) {
|
||||
bool find = false;
|
||||
for (int k = 0; k < 2; k++) {
|
||||
if (current_line_num[j] == cache_line_num[k]) {
|
||||
cache_line_used[k] = true;
|
||||
current_line_ptr[j] = cache_line_ptr[k];
|
||||
find = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!find) {
|
||||
const float *line = input_data + current_line_num[j] * in_w * in_c;
|
||||
for (int k = 0; k < 2; k++) {
|
||||
if (!cache_line_used[k]) {
|
||||
cache_line_num[k] = current_line_num[j];
|
||||
cache_line_used[k] = true;
|
||||
current_line_ptr[j] = cache_line_ptr[k];
|
||||
InterpRow(line, current_line_ptr[j], new_width, x_left_weight, x_left, x_right, in_c);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// do col interp
|
||||
InterpCol(current_line_ptr[0], current_line_ptr[1], output_data + h * h_stride, new_width, y_bottom_weight[h],
|
||||
in_c);
|
||||
}
|
||||
}
|
||||
|
||||
int ResizeBilinear(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
const int *y_bottoms, const int *y_tops, const int *x_lefts, const int *x_rights,
|
||||
const float *y_bottom_weights, const float *x_left_weights, float *line0, float *line1,
|
||||
const int h_begin, const int h_end, bool is_crop) {
|
||||
const int h_begin, const int h_end) {
|
||||
if (input_data == NULL || output_data == NULL || input_shape == NULL || output_shape == NULL || y_bottoms == NULL ||
|
||||
y_tops == NULL || x_lefts == NULL || x_rights == NULL || y_bottom_weights == NULL || x_left_weights == NULL) {
|
||||
return NNACL_NULL_PTR;
|
||||
|
@ -158,75 +211,48 @@ int ResizeBilinear(const float *input_data, float *output_data, const int *input
|
|||
int in_h = input_shape[1];
|
||||
int in_w = input_shape[2];
|
||||
int in_c = input_shape[3];
|
||||
|
||||
int new_height = output_shape[1];
|
||||
int new_width = output_shape[2];
|
||||
int h_stride = new_width * in_c;
|
||||
|
||||
const int *y_bottom = y_bottoms;
|
||||
const int *y_top = y_tops;
|
||||
const float *y_bottom_weight = y_bottom_weights;
|
||||
const int *x_left = x_lefts;
|
||||
const int *x_right = x_rights;
|
||||
const float *x_left_weight = x_left_weights;
|
||||
|
||||
for (int b = 0; b < in_b; b++) {
|
||||
if (is_crop) {
|
||||
y_bottom = y_bottoms + b * new_height;
|
||||
y_top = y_tops + b * new_height;
|
||||
y_bottom_weight = y_bottom_weights + b * new_height;
|
||||
x_left = x_lefts + b * new_width;
|
||||
x_right = x_rights + b * new_width;
|
||||
x_left_weight = x_left_weights + b * new_width;
|
||||
}
|
||||
const float *input = input_data + b * in_h * in_w * in_c;
|
||||
float *output = output_data + b * new_height * new_width * in_c;
|
||||
bool cache_line_used[2] = {false, false};
|
||||
int cache_line_num[2] = {-1, -1};
|
||||
float *const cache_line_ptr[2] = {line0, line1};
|
||||
float *current_line_ptr[2] = {line0, line1};
|
||||
int current_line_num[2] = {-1, -1};
|
||||
|
||||
for (int h = h_begin; h < h_end; h++) {
|
||||
current_line_num[0] = y_bottom[h];
|
||||
current_line_num[1] = y_top[h];
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
cache_line_used[i] = false;
|
||||
}
|
||||
// search if we cached
|
||||
for (int j = 0; j < 2; j++) {
|
||||
bool find = false;
|
||||
for (int k = 0; k < 2; k++) {
|
||||
if (current_line_num[j] == cache_line_num[k]) {
|
||||
cache_line_used[k] = true;
|
||||
current_line_ptr[j] = cache_line_ptr[k];
|
||||
find = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!find) {
|
||||
const float *line = input + current_line_num[j] * in_w * in_c;
|
||||
for (int k = 0; k < 2; k++) {
|
||||
if (!cache_line_used[k]) {
|
||||
cache_line_num[k] = current_line_num[j];
|
||||
cache_line_used[k] = true;
|
||||
current_line_ptr[j] = cache_line_ptr[k];
|
||||
InterpRow(line, current_line_ptr[j], new_width, x_left_weight, x_left, x_right, in_c);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// do col interp
|
||||
InterpCol(current_line_ptr[0], current_line_ptr[1], output + h * h_stride, new_width, y_bottom_weight[h], in_c);
|
||||
Bilinear(input, output, input_shape, output_shape, y_bottoms, y_tops, x_lefts, x_rights, y_bottom_weights,
|
||||
x_left_weights, line0, line1, h_begin, h_end);
|
||||
}
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int CropAndResizeBilinear(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
const int *y_bottoms, const int *y_tops, const int *x_lefts, const int *x_rights,
|
||||
const float *y_bottom_weights, const float *x_left_weights, float *line0, float *line1,
|
||||
const int h_begin, const int h_end) {
|
||||
if (input_data == NULL || output_data == NULL || input_shape == NULL || output_shape == NULL || y_bottoms == NULL ||
|
||||
y_tops == NULL || x_lefts == NULL || x_rights == NULL || y_bottom_weights == NULL || x_left_weights == NULL) {
|
||||
return NNACL_NULL_PTR;
|
||||
}
|
||||
int batch = output_shape[0];
|
||||
int new_height = output_shape[1];
|
||||
int new_width = output_shape[2];
|
||||
int new_channel = output_shape[3];
|
||||
|
||||
for (int b = 0; b < batch; b++) {
|
||||
const int *y_bottom = y_bottoms + b * new_height;
|
||||
const int *y_top = y_tops + b * new_height;
|
||||
const float *y_bottom_weight = y_bottom_weights + b * new_height;
|
||||
const int *x_left = x_lefts + b * new_width;
|
||||
const int *x_right = x_rights + b * new_width;
|
||||
const float *x_left_weight = x_left_weights + b * new_width;
|
||||
float *output = output_data + b * new_height * new_width * new_channel;
|
||||
|
||||
Bilinear(input_data, output, input_shape, output_shape, y_bottom, y_top, x_left, x_right, y_bottom_weight,
|
||||
x_left_weight, line0, line1, h_begin, h_end);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ResizeNearestNeighbor(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
CalculateOriginalCoordinate calculate, int coordinate_transform_mode, int tid,
|
||||
int thread_num) {
|
||||
|
|
|
@ -31,14 +31,19 @@ int PrepareResizeBilinear(const int *input_shape, const int *output_shape, Calcu
|
|||
int *y_bottoms, int *y_tops, int *x_lefts, int *x_rights, float *y_bottom_weights,
|
||||
float *x_left_weights);
|
||||
|
||||
int ResizeBilinear(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
const int *y_bottoms, const int *y_tops, const int *x_lefts, const int *x_rights,
|
||||
const float *y_bottom_weights, const float *x_left_weights, float *line0, float *line1,
|
||||
const int h_begin, const int h_end);
|
||||
|
||||
int PrepareCropAndResizeBilinear(const int *input_shape, const float *boxes, const int *box_idx,
|
||||
const int *output_shape, int *y_bottoms, int *y_tops, int *x_lefts, int *x_rights,
|
||||
float *y_bottom_weights, float *x_left_weights);
|
||||
|
||||
int ResizeBilinear(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
const int *y_bottoms, const int *y_tops, const int *x_lefts, const int *x_rights,
|
||||
const float *y_bottom_weights, const float *x_left_weights, float *line0, float *line1,
|
||||
const int h_begin, const int h_end, bool is_crop);
|
||||
int CropAndResizeBilinear(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
const int *y_bottoms, const int *y_tops, const int *x_lefts, const int *x_rights,
|
||||
const float *y_bottom_weights, const float *x_left_weights, float *line0, float *line1,
|
||||
const int h_begin, const int h_end);
|
||||
|
||||
int ResizeNearestNeighbor(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
||||
CalculateOriginalCoordinate calculate, int coordinate_transform_mode, int tid,
|
||||
|
|
|
@ -26,4 +26,11 @@ typedef struct ResizeParameter {
|
|||
int coordinate_transform_mode_;
|
||||
bool preserve_aspect_ratio_;
|
||||
} ResizeParameter;
|
||||
|
||||
typedef struct CropAndResizeParameter {
|
||||
// primitive parameter
|
||||
OpParameter op_parameter_;
|
||||
int method_;
|
||||
float extrapolation_value_;
|
||||
} CropAndResizeParameter;
|
||||
#endif // MINDSPORE_LITE_NNACL_RESIZE_PARAMETER_H_
|
||||
|
|
|
@ -270,6 +270,7 @@ union PrimitiveType {
|
|||
InvertPermutation,
|
||||
Size,
|
||||
RandomStandardNormal,
|
||||
CropAndResize,
|
||||
}
|
||||
|
||||
enum QuantType: int {
|
||||
|
|
|
@ -1255,3 +1255,8 @@ table RandomStandardNormal {
|
|||
seed : int;
|
||||
seed2 : int;
|
||||
}
|
||||
|
||||
table CropAndResize {
|
||||
method : ResizeMethod;
|
||||
extrapolation_value : float;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,111 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/ops/crop_and_resize.h"
|
||||
|
||||
#ifndef PRIMITIVE_WRITEABLE
|
||||
#include "src/ops/ops_register.h"
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
#ifdef PRIMITIVE_WRITEABLE
|
||||
int CropAndResize::GetMethod() const { return this->primitive_->value.AsCropAndResize()->method; }
|
||||
float CropAndResize::GetExtrapolationValue() const {
|
||||
return this->primitive_->value.AsCropAndResize()->extrapolation_value;
|
||||
}
|
||||
|
||||
void CropAndResize::SetMethod(int method) {
|
||||
this->primitive_->value.AsCropAndResize()->method = (schema::ResizeMethod)method;
|
||||
}
|
||||
void CropAndResize::SetExtrapolationValue(float value) {
|
||||
this->primitive_->value.AsCropAndResize()->extrapolation_value = value;
|
||||
}
|
||||
#else
|
||||
|
||||
int CropAndResize::GetMethod() const { return this->primitive_->value_as_CropAndResize()->method(); }
|
||||
float CropAndResize::GetExtrapolationValue() const {
|
||||
return this->primitive_->value_as_CropAndResize()->extrapolation_value();
|
||||
}
|
||||
int CropAndResize::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
|
||||
MS_ASSERT(nullptr != primitive);
|
||||
MS_ASSERT(nullptr != fbb);
|
||||
auto attr = primitive->value_as_CropAndResize();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "value_as_CropAndResize return nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto val_offset = schema::CreateCropAndResize(*fbb, attr->method(), attr->extrapolation_value());
|
||||
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_CropAndResize, val_offset.o);
|
||||
fbb->Finish(prim_offset);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
PrimitiveC *CropAndResizeCreator(const schema::Primitive *primitive) {
|
||||
return PrimitiveC::NewPrimitiveC<CropAndResize>(primitive);
|
||||
}
|
||||
Registry CropAndResizeRegistry(schema::PrimitiveType_CropAndResize, CropAndResizeCreator);
|
||||
#endif
|
||||
|
||||
namespace {
|
||||
constexpr int kInputRank = 4;
|
||||
} // namespace
|
||||
int CropAndResize::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) {
|
||||
MS_ASSERT(this->primitive_ != nullptr);
|
||||
if (inputs_.size() != 4) {
|
||||
MS_LOG(ERROR) << "Input tensor num should be 4 for crop_an_resize.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto input = inputs_.front();
|
||||
if (input == nullptr) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (!input->shape().empty() && input->shape().size() != kInputRank) {
|
||||
MS_LOG(ERROR) << "Size of input shape is wrong.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (input->format() != schema::Format_NHWC) {
|
||||
MS_LOG(ERROR) << "Crop_an_resize op only support NHWC format.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
auto output = outputs_.front();
|
||||
if (output == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
output->set_data_type(input->data_type());
|
||||
output->set_format(input->format());
|
||||
if (!infer_flag()) {
|
||||
return RET_INFER_INVALID;
|
||||
}
|
||||
|
||||
std::vector<int> output_shape;
|
||||
auto boxes_tensor = inputs_[1];
|
||||
output_shape.push_back(boxes_tensor->shape()[0]);
|
||||
auto shape_tensor = inputs_[3];
|
||||
auto data = reinterpret_cast<int32_t *>(shape_tensor->data_c());
|
||||
if (data == nullptr) {
|
||||
MS_LOG(INFO) << "The data of 4th input tensor(shape tensor) for crop_an_resize op is nullptr.";
|
||||
return RET_INFER_INVALID;
|
||||
}
|
||||
output_shape.push_back(data[0]);
|
||||
output_shape.push_back(data[1]);
|
||||
output_shape.push_back(input->Channel());
|
||||
output->set_shape(output_shape);
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,47 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef LITE_MINDSPORE_LITE_C_OPS_CROP_AND_RESIZE_H_
|
||||
#define LITE_MINDSPORE_LITE_C_OPS_CROP_AND_RESIZE_H_
|
||||
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <cmath>
|
||||
|
||||
#include "src/ops/primitive_c.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
class CropAndResize : public PrimitiveC {
|
||||
public:
|
||||
CropAndResize() = default;
|
||||
~CropAndResize() = default;
|
||||
#ifdef PRIMITIVE_WRITEABLE
|
||||
MS_DECLARE_PARENT(CropAndResize, PrimitiveC);
|
||||
explicit CropAndResize(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
|
||||
void SetMethod(int method);
|
||||
void SetExtrapolationValue(float value);
|
||||
#else
|
||||
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
|
||||
#endif
|
||||
int InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) override;
|
||||
int GetMethod() const;
|
||||
float GetExtrapolationValue() const;
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // LITE_MINDSPORE_LITE_C_OPS_CROP_AND_RESIZE_H_
|
|
@ -0,0 +1,40 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/ops/crop_and_resize.h"
|
||||
#include "src/ops/primitive_c.h"
|
||||
#include "src/ops/populate/populate_register.h"
|
||||
#include "nnacl/resize_parameter.h"
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
OpParameter *PopulateCropAndResizeParameter(const mindspore::lite::PrimitiveC *primitive) {
|
||||
CropAndResizeParameter *crop_resize_param =
|
||||
reinterpret_cast<CropAndResizeParameter *>(malloc(sizeof(CropAndResizeParameter)));
|
||||
if (crop_resize_param == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc CropAndResizeParameter failed.";
|
||||
return nullptr;
|
||||
}
|
||||
memset(crop_resize_param, 0, sizeof(CropAndResizeParameter));
|
||||
crop_resize_param->op_parameter_.type_ = primitive->Type();
|
||||
auto param = reinterpret_cast<mindspore::lite::CropAndResize *>(const_cast<mindspore::lite::PrimitiveC *>(primitive));
|
||||
crop_resize_param->method_ = static_cast<int>(param->GetMethod());
|
||||
crop_resize_param->extrapolation_value_ = param->GetExtrapolationValue();
|
||||
return reinterpret_cast<OpParameter *>(crop_resize_param);
|
||||
}
|
||||
|
||||
Registry CropAndResizeParameterRegistry(schema::PrimitiveType_CropAndResize, PopulateCropAndResizeParameter);
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,178 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/fp32/crop_and_resize_fp32.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
#include "nnacl/fp32/resize_fp32.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_INVALID_OP_ATTR;
|
||||
using mindspore::lite::RET_NULL_PTR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_CropAndResize;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int CropAndResizeCPUKernel::Init() {
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
int CropAndResizeCPUKernel::ReSize() {
|
||||
new_height_ = out_tensors_.at(0)->shape()[1];
|
||||
new_width_ = out_tensors_.at(0)->shape()[2];
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int CropAndResizeCPUKernel::MallocTmpBuffer() {
|
||||
// Malloc buffer to save coordinate.
|
||||
// For mode CROP_AND_RESIZE, different output batches require different cache coordinates.
|
||||
int c = in_tensors_.at(0)->Channel();
|
||||
y_bottoms_ = reinterpret_cast<int *>(context_->allocator->Malloc(sizeof(int) * new_height_ * batch_));
|
||||
if (y_bottoms_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
y_tops_ = reinterpret_cast<int *>(context_->allocator->Malloc(sizeof(int) * new_height_ * batch_));
|
||||
if (y_tops_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
y_bottom_weights_ = reinterpret_cast<float *>(context_->allocator->Malloc(sizeof(float) * new_height_ * batch_));
|
||||
if (y_bottom_weights_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
x_lefts_ = reinterpret_cast<int *>(context_->allocator->Malloc(sizeof(int) * new_width_ * batch_));
|
||||
if (x_lefts_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
x_rights_ = reinterpret_cast<int *>(context_->allocator->Malloc(sizeof(int) * new_width_ * batch_));
|
||||
if (x_rights_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
x_left_weights_ = reinterpret_cast<float *>(context_->allocator->Malloc(sizeof(float) * new_width_ * batch_));
|
||||
if (x_left_weights_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
line_buffer_ =
|
||||
reinterpret_cast<float *>(context_->allocator->Malloc(sizeof(float) * new_width_ * c * 2 * context_->thread_num_));
|
||||
if (line_buffer_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
void CropAndResizeCPUKernel::FreeTmpBuffer() {
|
||||
context_->allocator->Free(y_bottoms_);
|
||||
context_->allocator->Free(y_tops_);
|
||||
context_->allocator->Free(y_bottom_weights_);
|
||||
context_->allocator->Free(x_lefts_);
|
||||
context_->allocator->Free(x_rights_);
|
||||
context_->allocator->Free(x_left_weights_);
|
||||
context_->allocator->Free(line_buffer_);
|
||||
}
|
||||
|
||||
int CropAndResizeImpl(void *cdata, int task_id) {
|
||||
auto resize = reinterpret_cast<CropAndResizeCPUKernel *>(cdata);
|
||||
auto error_code = resize->RunImpl(task_id);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "CropAndResize Run error task_id[" << task_id << "] error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int CropAndResizeCPUKernel::RunImpl(int task_id) {
|
||||
auto input = in_tensors_.at(0);
|
||||
auto input_data = reinterpret_cast<float *>(input->data_c());
|
||||
if (input_data == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
auto output_data = reinterpret_cast<float *>(out_tensors_.at(0)->data_c());
|
||||
if (output_data == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
auto input_shape = input->shape();
|
||||
int unit = UP_DIV(new_height_, context_->thread_num_);
|
||||
int h_begin = unit * task_id;
|
||||
int h_end = MSMIN(h_begin + unit, new_height_);
|
||||
int c = in_tensors_.at(0)->shape().at(3);
|
||||
float *line0 = line_buffer_ + new_width_ * c * 2 * task_id;
|
||||
float *line1 = line0 + new_width_ * c;
|
||||
int ret = 0;
|
||||
if (is_crop_) {
|
||||
ret = CropAndResizeBilinear(input_data, output_data, input_shape.data(), out_tensors_.at(0)->shape().data(),
|
||||
y_bottoms_, y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_, line0,
|
||||
line1, h_begin, h_end);
|
||||
} else {
|
||||
ret =
|
||||
ResizeBilinear(input_data, output_data, input_shape.data(), out_tensors_.at(0)->shape().data(), y_bottoms_,
|
||||
y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_, line0, line1, h_begin, h_end);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
int CropAndResizeCPUKernel::Run() {
|
||||
auto ret = MallocTmpBuffer();
|
||||
if (ret != RET_OK) {
|
||||
FreeTmpBuffer();
|
||||
return ret;
|
||||
}
|
||||
|
||||
auto input = in_tensors_.at(0);
|
||||
auto input_shape = input->shape();
|
||||
// if boxes tensor data is nullptr, crop_and_resize can be seen as resize with coordinate transformation mode
|
||||
// ALIGN_CORNERS
|
||||
if (in_tensors_.at(1)->ElementsNum() == 0 || in_tensors_.at(1)->data_c() == nullptr) {
|
||||
batch_ = 1;
|
||||
is_crop_ = false;
|
||||
ret = PrepareResizeBilinear(input_shape.data(), out_tensors_.at(0)->shape().data(), CalculateAlignCorners,
|
||||
y_bottoms_, y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_);
|
||||
} else {
|
||||
batch_ = out_tensors_[0]->Batch();
|
||||
auto boxes = reinterpret_cast<float *>(in_tensors_.at(1)->data_c());
|
||||
auto box_idx = reinterpret_cast<int32_t *>(in_tensors_.at(2)->data_c());
|
||||
ret = PrepareCropAndResizeBilinear(input_shape.data(), boxes, box_idx, out_tensors_.at(0)->shape().data(),
|
||||
y_bottoms_, y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_);
|
||||
}
|
||||
if (ret != RET_OK) {
|
||||
FreeTmpBuffer();
|
||||
return ret;
|
||||
}
|
||||
|
||||
int error_code = ParallelLaunch(this->context_->thread_pool_, CropAndResizeImpl, this, context_->thread_num_);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "CropAndResize run error, error_code[" << error_code << "]";
|
||||
FreeTmpBuffer();
|
||||
return RET_ERROR;
|
||||
}
|
||||
FreeTmpBuffer();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_CropAndResize, LiteKernelCreator<CropAndResizeCPUKernel>)
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,60 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CROP_AND_RESIZE_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CROP_AND_RESIZE_H_
|
||||
|
||||
#include <vector>
|
||||
#include "include/errorcode.h"
|
||||
#include "nnacl/resize_parameter.h"
|
||||
#include "src/lite_kernel.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class CropAndResizeCPUKernel : public LiteKernel {
|
||||
public:
|
||||
CropAndResizeCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||
param_ = reinterpret_cast<CropAndResizeParameter *>(op_parameter_);
|
||||
}
|
||||
|
||||
~CropAndResizeCPUKernel() = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
int RunImpl(int task_id);
|
||||
|
||||
protected:
|
||||
int MallocTmpBuffer();
|
||||
void FreeTmpBuffer();
|
||||
|
||||
CropAndResizeParameter *param_;
|
||||
int batch_;
|
||||
int new_height_;
|
||||
int new_width_;
|
||||
bool is_crop_ = true;
|
||||
int *y_tops_ = nullptr;
|
||||
int *y_bottoms_ = nullptr;
|
||||
int *x_lefts_ = nullptr;
|
||||
int *x_rights_ = nullptr;
|
||||
float *y_bottom_weights_ = nullptr;
|
||||
float *x_left_weights_ = nullptr;
|
||||
float *line_buffer_ = nullptr;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CROP_AND_RESIZE_H_
|
|
@ -43,8 +43,6 @@ int ResizeCPUKernel::Init() {
|
|||
case schema::CoordinateTransformMode_HALF_PIXEL:
|
||||
calculate_ = CalculateHalfPixel;
|
||||
break;
|
||||
case schema::CoordinateTransformMode_TF_CROP_AND_RESIZE:
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "Do not support coordinate transform mode. Mode is"
|
||||
<< schema::EnumNameCoordinateTransformMode(
|
||||
|
@ -75,15 +73,8 @@ int ResizeCPUKernel::ReSize() {
|
|||
|
||||
auto input = in_tensors_.at(0);
|
||||
auto input_shape = input->shape();
|
||||
if (coordinate_transform_mode_ == schema::CoordinateTransformMode_TF_CROP_AND_RESIZE) {
|
||||
auto boxes = reinterpret_cast<float *>(in_tensors_.at(1)->data_c());
|
||||
auto box_idx = reinterpret_cast<int32_t *>(in_tensors_.at(2)->data_c());
|
||||
ret = PrepareCropAndResizeBilinear(input_shape.data(), boxes, box_idx, out_tensors_.at(0)->shape().data(),
|
||||
y_bottoms_, y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_);
|
||||
} else {
|
||||
ret = PrepareResizeBilinear(input_shape.data(), out_tensors_.at(0)->shape().data(), calculate_, y_bottoms_,
|
||||
y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_);
|
||||
}
|
||||
ret = PrepareResizeBilinear(input_shape.data(), out_tensors_.at(0)->shape().data(), calculate_, y_bottoms_, y_tops_,
|
||||
x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_);
|
||||
if (ret != RET_OK) {
|
||||
FreeTmpBuffer();
|
||||
}
|
||||
|
@ -92,42 +83,36 @@ int ResizeCPUKernel::ReSize() {
|
|||
}
|
||||
|
||||
int ResizeCPUKernel::MallocTmpBuffer() {
|
||||
int b = in_tensors_.at(0)->Batch();
|
||||
// Malloc buffer to save coordinate. For mode CROP_AND_RESIZE, different batches require different cache coordinates.
|
||||
// For other modes, different batches have different cache coordinates.
|
||||
if (coordinate_transform_mode_ != schema::CoordinateTransformMode_TF_CROP_AND_RESIZE) {
|
||||
b = 1;
|
||||
}
|
||||
int c = in_tensors_.at(0)->Channel();
|
||||
int h = new_height_;
|
||||
int w = new_width_;
|
||||
y_bottoms_ = reinterpret_cast<int *>(malloc(sizeof(int) * h * b));
|
||||
y_bottoms_ = reinterpret_cast<int *>(malloc(sizeof(int) * h));
|
||||
if (y_bottoms_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
y_tops_ = reinterpret_cast<int *>(malloc(sizeof(int) * h * b));
|
||||
y_tops_ = reinterpret_cast<int *>(malloc(sizeof(int) * h));
|
||||
if (y_tops_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
y_bottom_weights_ = reinterpret_cast<float *>(malloc(sizeof(float) * h * b));
|
||||
y_bottom_weights_ = reinterpret_cast<float *>(malloc(sizeof(float) * h));
|
||||
if (y_bottom_weights_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
x_lefts_ = reinterpret_cast<int *>(malloc(sizeof(int) * w * b));
|
||||
x_lefts_ = reinterpret_cast<int *>(malloc(sizeof(int) * w));
|
||||
if (x_lefts_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
x_rights_ = reinterpret_cast<int *>(malloc(sizeof(int) * w * b));
|
||||
x_rights_ = reinterpret_cast<int *>(malloc(sizeof(int) * w));
|
||||
if (x_rights_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
x_left_weights_ = reinterpret_cast<float *>(malloc(sizeof(float) * w * b));
|
||||
x_left_weights_ = reinterpret_cast<float *>(malloc(sizeof(float) * w));
|
||||
if (x_left_weights_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
|
@ -137,9 +122,9 @@ int ResizeCPUKernel::MallocTmpBuffer() {
|
|||
MS_LOG(ERROR) << "malloc data failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
void ResizeCPUKernel::FreeTmpBuffer() {
|
||||
if (y_bottoms_ != nullptr) {
|
||||
free(y_bottoms_);
|
||||
|
@ -184,11 +169,11 @@ int ResizeImpl(void *cdata, int task_id) {
|
|||
|
||||
int ResizeCPUKernel::RunImpl(int task_id) {
|
||||
auto input = in_tensors_.at(0);
|
||||
auto input_data = reinterpret_cast<float *>(input->MutableData());
|
||||
auto input_data = reinterpret_cast<float *>(input->data_c());
|
||||
if (input_data == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
auto output_data = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
|
||||
auto output_data = reinterpret_cast<float *>(out_tensors_.at(0)->data_c());
|
||||
if (output_data == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
@ -205,11 +190,9 @@ int ResizeCPUKernel::RunImpl(int task_id) {
|
|||
int c = in_tensors_.at(0)->shape().at(3);
|
||||
float *line0 = line_buffer_ + new_width_ * c * 2 * task_id;
|
||||
float *line1 = line0 + new_width_ * c;
|
||||
|
||||
bool is_crop = coordinate_transform_mode_ == schema::CoordinateTransformMode_TF_CROP_AND_RESIZE;
|
||||
ret = ResizeBilinear(input_data, output_data, input_shape.data(), out_tensors_.at(0)->shape().data(), y_bottoms_,
|
||||
y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_, line0, line1, h_begin,
|
||||
h_end, is_crop);
|
||||
ret =
|
||||
ResizeBilinear(input_data, output_data, input_shape.data(), out_tensors_.at(0)->shape().data(), y_bottoms_,
|
||||
y_tops_, x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_, line0, line1, h_begin, h_end);
|
||||
break;
|
||||
}
|
||||
case static_cast<int>(schema::ResizeMethod_NEAREST): {
|
||||
|
|
|
@ -23,9 +23,6 @@
|
|||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/base/resize_base.h"
|
||||
|
||||
using mindspore::schema::PrimitiveType_Resize;
|
||||
using mindspore::schema::ResizeMethod;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class ResizeCPUKernel : public ResizeBaseCPUKernel {
|
||||
public:
|
||||
|
|
|
@ -105,9 +105,7 @@ int UpsampleCPUKernel::RunImpl(int task_id) {
|
|||
float *line0 = line_buffer_ + new_width_ * c * 2 * task_id;
|
||||
float *line1 = line0 + new_width_ * c;
|
||||
ret = ResizeBilinear(input_data, output_data, input_shape.data(), out_tensor->shape().data(), y_bottoms_, y_tops_,
|
||||
x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_, line0, line1, n_h_begin, n_h_end,
|
||||
false);
|
||||
|
||||
x_lefts_, x_rights_, y_bottom_weights_, x_left_weights_, line0, line1, n_h_begin, n_h_end);
|
||||
break;
|
||||
}
|
||||
case static_cast<int>(schema::ResizeMethod_NEAREST): {
|
||||
|
|
Loading…
Reference in New Issue