!11143 add tf parser

From: @yeyunpeng2020
Reviewed-by: @hangangqiang,@zhang_xue_tong
Signed-off-by: @hangangqiang,@zhang_xue_tong
This commit is contained in:
mindspore-ci-bot 2021-01-11 17:21:26 +08:00 committed by Gitee
commit 9d5bdf1ddc
30 changed files with 1450 additions and 10 deletions

View File

@ -267,6 +267,8 @@ union PrimitiveType {
GeLU,
Gru,
NonZero,
InvertPermutation,
Size,
}
enum QuantType: int {

View File

@ -1240,3 +1240,9 @@ table GeLU {
table NonZero {
}
table InvertPermutation {
}
table Size {
}

View File

@ -0,0 +1,58 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/invert_permutation.h"
#include "src/common/common.h"
#ifndef PRIMITIVE_WRITEABLE
#include "src/ops/ops_register.h"
#endif
namespace mindspore {
namespace lite {
#ifdef PRIMITIVE_WRITEABLE
#else
int InvertPermutation::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
MS_ASSERT(nullptr != primitive);
MS_ASSERT(nullptr != fbb);
auto val_offset = schema::CreateSize(*fbb);
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_InvertPermutation, val_offset.o);
fbb->Finish(prim_offset);
return RET_OK;
}
PrimitiveC *InvertPermutationCreator(const schema::Primitive *primitive) {
return PrimitiveC::NewPrimitiveC<InvertPermutation>(primitive);
}
Registry InvertPermutationRegistry(schema::PrimitiveType_InvertPermutation, InvertPermutationCreator);
#endif
int InvertPermutation::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) {
MS_ASSERT(this->primitive_ != nullptr);
auto input = inputs_.front();
MS_ASSERT(input != nullptr);
auto output = outputs_.front();
MS_ASSERT(output != nullptr);
output->set_format(input->format());
output->set_data_type(input->data_type());
if (!infer_flag()) {
return RET_INFER_INVALID;
}
output->set_shape(input->shape());
return RET_OK;
}
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,43 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LITE_MINDSPORE_LITE_C_OPS_INVERTPERMUTATION_H_
#define LITE_MINDSPORE_LITE_C_OPS_INVERTPERMUTATION_H_
#include <vector>
#include <set>
#include <cmath>
#include "src/ops/primitive_c.h"
namespace mindspore {
namespace lite {
class InvertPermutation : public PrimitiveC {
public:
InvertPermutation() = default;
~InvertPermutation() = default;
#ifdef PRIMITIVE_WRITEABLE
MS_DECLARE_PARENT(InvertPermutation, PrimitiveC);
explicit InvertPermutation(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
#else
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
#endif
int InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) override;
};
} // namespace lite
} // namespace mindspore
#endif // LITE_MINDSPORE_LITE_C_OPS_INVERTPERMUTATION_H_

View File

@ -164,6 +164,8 @@
#include "src/ops/select.h"
#include "src/ops/gelu.h"
#include "src/ops/gru.h"
#include "src/ops/size.h"
#include "src/ops/invert_permutation.h"
#ifdef SUPPORT_TRAIN
#include "src/ops/neg_grad.h"
@ -1004,6 +1006,10 @@ PrimitiveC *PrimitiveC::Create(mindspore::schema::PrimitiveT *primitive) {
return new (std::nothrow) Select(primitive);
case schema::PrimitiveType_Gru:
return new (std::nothrow) Gru(primitive);
case schema::PrimitiveType_Size:
return new (std::nothrow) Size(primitive);
case schema::PrimitiveType_InvertPermutation:
return new (std::nothrow) InvertPermutation(primitive);
#ifdef SUPPORT_TRAIN
case schema::PrimitiveType_ActivationGrad:
return new (std::nothrow) ActivationGrad(primitive);

View File

@ -0,0 +1,64 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/size.h"
#include "src/common/common.h"
#ifndef PRIMITIVE_WRITEABLE
#include "src/ops/ops_register.h"
#endif
namespace mindspore {
namespace lite {
constexpr int kShapeInputNum = 1;
constexpr int kShapeOutputNum = 1;
#ifdef PRIMITIVE_WRITEABLE
#else
int Size::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
MS_ASSERT(nullptr != primitive);
MS_ASSERT(nullptr != fbb);
auto val_offset = schema::CreateSize(*fbb);
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_Size, val_offset.o);
fbb->Finish(prim_offset);
return RET_OK;
}
PrimitiveC *SizeCreator(const schema::Primitive *primitive) { return PrimitiveC::NewPrimitiveC<Size>(primitive); }
Registry SizeRegistry(schema::PrimitiveType_Size, SizeCreator);
#endif
int Size::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) {
if (inputs_.size() != kShapeInputNum) {
MS_LOG(ERROR) << "inputs to Shape operator should be 1, but " << inputs_.size() << " is given.";
return RET_ERROR;
}
if (outputs_.size() != kShapeOutputNum) {
MS_LOG(ERROR) << "outputs to Shape operator should be 1, but " << outputs_.size() << " is given.";
return RET_ERROR;
}
auto in_tensor = inputs_.front();
auto out_tensor = outputs_.front();
out_tensor->set_data_type(kNumberTypeInt32);
out_tensor->set_format(in_tensor->format());
if (!infer_flag()) {
return RET_INFER_INVALID;
}
std::vector<int> out_shape;
out_shape.push_back(static_cast<int>(in_tensor->shape().size()));
out_tensor->set_shape(out_shape);
return RET_OK;
}
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,43 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LITE_MINDSPORE_LITE_C_OPS_SIZE_H_
#define LITE_MINDSPORE_LITE_C_OPS_SIZE_H_
#include <vector>
#include <set>
#include <cmath>
#include "src/ops/primitive_c.h"
namespace mindspore {
namespace lite {
class Size : public PrimitiveC {
public:
Size() = default;
~Size() = default;
#ifdef PRIMITIVE_WRITEABLE
MS_DECLARE_PARENT(Size, PrimitiveC);
explicit Size(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
#else
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
#endif
int InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) override;
};
} // namespace lite
} // namespace mindspore
#endif // LITE_MINDSPORE_LITE_C_OPS_SIZE_H_

View File

@ -0,0 +1,88 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_arithmetic_self_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
template <typename T>
int CreateOperator(const std::unique_ptr<schema::PrimitiveT> &primitive, schema::PrimitiveType type) {
auto attr = std::make_unique<T>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = type;
primitive->value.value = attr.release();
return RET_OK;
}
STATUS TFArithmeticSelfParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF ArithmeticParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
int status = RET_ERROR;
if (tf_op.op() == "Ceil") {
status = CreateOperator<schema::CeilT>(primitive, schema::PrimitiveType_Ceil);
} else if (tf_op.op() == "Exp") {
status = CreateOperator<schema::ExpT>(primitive, schema::PrimitiveType_Exp);
} else if (tf_op.op() == "Floor") {
status = CreateOperator<schema::FloorT>(primitive, schema::PrimitiveType_Floor);
} else if (tf_op.op() == "Log") {
status = CreateOperator<schema::LogT>(primitive, schema::PrimitiveType_Log);
} else if (tf_op.op() == "Sqrt") {
status = CreateOperator<schema::SqrtT>(primitive, schema::PrimitiveType_Sqrt);
}
if (status != RET_OK) {
return status;
}
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfCeilParser("Ceil", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfExpParser("Exp", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfFloorParser("Floor", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfLogParser("Log", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfSqrtParser("Sqrt", new TFArithmeticSelfParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,36 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ARITHMETIC_SELF_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ARITHMETIC_SELF_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFArithmeticSelfParser : public TFNodeParser {
public:
TFArithmeticSelfParser() = default;
~TFArithmeticSelfParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ARITHMETIC_SELF_PARSER_H_

View File

@ -45,10 +45,6 @@ STATUS TFConvParser::Parse(const tensorflow::NodeDef &tf_op,
attr->group = 1;
attr->format = TensorFlowUtils::ParseNodeFormat(tf_op);
if (attr->format == schema::Format_NCHW) {
MS_LOG(ERROR) << "TF Conv2D with data_format=NCHW is not supported now";
return RET_ERROR;
}
std::vector<int64_t> dilations(2);
auto status = ParseDilations(tf_op, attr->format, &dilations);

View File

@ -0,0 +1,107 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_crop_and_resize_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFCropAndResizeParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF ResizeParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::ResizeT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
attr->format = schema::Format_NHWC;
attr->coordinateTransformMode = schema::CoordinateTransformMode_CROP_AND_RESIZE;
// align_corners
if (TensorFlowUtils::FindAttrValue(tf_op, "align_corners", &attr_value)) {
attr->alignCorners = true;
}
// extrapolation_value
if (!TensorFlowUtils::FindAttrValue(tf_op, "extrapolation_value", &attr_value)) {
MS_LOG(ERROR) << "The align_corners attr should be specified";
return RET_ERROR;
}
attr->extrapolationValue = attr_value.f();
// method
if (!TensorFlowUtils::FindAttrValue(tf_op, "method", &attr_value)) {
MS_LOG(ERROR) << "The align_corners attr should be specified";
return RET_ERROR;
}
if (attr_value.s() == "bilinear") {
attr->method = schema::ResizeMethod_LINEAR;
} else if (attr_value.s() == "nearest_neighbor") {
attr->method = schema::ResizeMethod_NEAREST;
} else {
MS_LOG(ERROR) << "Do not support method: " << attr_value.s();
}
primitive->value.type = schema::PrimitiveType_Resize;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 1, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 2, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 3, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfCropAndResizeParser("CropAndResize", new TFCropAndResizeParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,36 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_CROP_AND_RESIZE_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_CROP_AND_RESIZE_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFCropAndResizeParser : public TFNodeParser {
public:
TFCropAndResizeParser() = default;
~TFCropAndResizeParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_CROP_AND_RESIZE_PARSER_H_

View File

@ -0,0 +1,68 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_gather_nd_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFGatherNDParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF GatherNDParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::GatherT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_GatherNd;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 1, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfGatherNDParser("GatherNd", new TFGatherNDParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_GATHER_ND_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_GATHER_ND_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFGatherNDParser : public TFNodeParser {
public:
TFGatherNDParser() = default;
~TFGatherNDParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_GATHER_ND_PARSER_H_

View File

@ -0,0 +1,63 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_invert_permutation_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFInvertPermutationParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF SizeParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::SizeT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_InvertPermutation;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfInvertPermutationParser("InvertPermutation", new TFInvertPermutationParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_INVERT_PERMUTATION_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_INVERT_PERMUTATION_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFInvertPermutationParser : public TFNodeParser {
public:
TFInvertPermutationParser() = default;
~TFInvertPermutationParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_INVERT_PERMUTATION_PARSER_H_

View File

@ -175,8 +175,9 @@ STATUS TFModelParser::ConvertConstVariant(const tensorflow::TensorProto &tensor_
return RET_OK;
}
STATUS TFModelParser::ConvertConstTensor(const tensorflow::AttrValue &attr_value, const TypeId &type,
const ParameterPtr &parameter, std::vector<int64_t> *shape_vector) {
STATUS TFModelParser::ConvertConstTensor(const tensorflow::NodeDef &node_def, const tensorflow::AttrValue &attr_value,
const TypeId &type, const ParameterPtr &parameter,
std::vector<int64_t> *shape_vector) {
MS_ASSERT(parameter != nullptr);
MS_ASSERT(shape_vector != nullptr);
const tensorflow::TensorProto &tensor_proto = attr_value.tensor();
@ -258,6 +259,23 @@ STATUS TFModelParser::ConvertConstTensor(const tensorflow::AttrValue &attr_value
}
tensor_size = (*tensor_data).size();
param_value->SetTensorData(tensor_data, tensor_size);
} else if (type == kNumberTypeInt64) {
param_value->set_tensor_type(kNumberTypeInt32);
auto *tensor_data = new (std::nothrow) int[shape_size];
if (tensor_data == nullptr) {
MS_LOG(ERROR) << "new data failed";
return RET_ERROR;
}
const auto origin_data = reinterpret_cast<const int64_t *>(tensor_proto.tensor_content().data());
for (int i = 0; i < shape_size; ++i) {
if (origin_data[i] > static_cast<int64_t>(INT32_MAX) || origin_data[i] < static_cast<int64_t>(INT32_MIN)) {
MS_LOG(WARNING) << "int64 data " << origin_data[i] << "too big to fit into int32";
tensor_data[i] = origin_data[i] > 0 ? INT32_MAX : INT32_MIN;
} else {
tensor_data[i] = static_cast<int>(origin_data[i]);
}
}
param_value->SetTensorData(tensor_data, shape_size * sizeof(int32_t));
} else {
MS_LOG(ERROR) << "Unsupport dataType: " << type;
return RET_ERROR;
@ -266,7 +284,15 @@ STATUS TFModelParser::ConvertConstTensor(const tensorflow::AttrValue &attr_value
std::vector<int> param_shape(shape_vector->begin(), shape_vector->end());
param_value->set_tensor_shape(param_shape);
param_value->set_tensor_type(type);
if (TensorFlowUtils::FindAttrValue(node_def, "data_format", const_cast<tensorflow::AttrValue *>(&attr_value))) {
auto format = mindspore::lite::TensorFlowUtils::ParseNodeFormat(node_def);
if (format == schema::Format_NUM_OF_FORMAT) {
MS_LOG(ERROR) << "Do not support data format: " << attr_value.s();
}
param_value->set_format(format);
} else {
param_value->set_format(schema::Format::Format_NHWC);
}
parameter->set_default_param(param_value);
return RET_OK;
}
@ -294,7 +320,7 @@ STATUS TFModelParser::ConvertParameter(const tensorflow::NodeDef &node, const Pa
if (TensorFlowUtils::FindAttrValue(node, "value", &attr_value)) {
MS_LOG(INFO) << "Found value attr, means it has default value";
auto status = ConvertConstTensor(attr_value, type, parameter, &shape_vector);
auto status = ConvertConstTensor(node, attr_value, type, parameter, &shape_vector);
if (status != RET_OK) {
return status;
}

View File

@ -45,8 +45,8 @@ class TFModelParser : public ModelParser {
private:
STATUS ConvertConstVariant(const tensorflow::TensorProto &tensor_proto, const ParamValueLitePtr &param_value);
STATUS ConvertConstTensor(const tensorflow::AttrValue &attr_value, const TypeId &type, const ParameterPtr &parameter,
std::vector<int64_t> *shape_vector);
STATUS ConvertConstTensor(const tensorflow::NodeDef &node_def, const tensorflow::AttrValue &attr_value,
const TypeId &type, const ParameterPtr &parameter, std::vector<int64_t> *shape_vector);
STATUS ConvertParameter(const tensorflow::NodeDef &node, const ParameterPtr &parameter,
std::unordered_map<std::string, AnfNodePtr> *anf_node_map);
STATUS ConvertGraphInputsAndConsts(const std::map<std::string, const tensorflow::NodeDef *> &tf_graph_nodes,

View File

@ -0,0 +1,83 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_non_max_suppression_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFNonMaxSuppressionParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF NonMaxSuppressionParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::NonMaxSuppressionT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
attr->centerPointBox = 0;
primitive->value.type = schema::PrimitiveType_NonMaxSuppression;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 1, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 2, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 3, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 4, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfNonMaxSuppressionV3Parser("NonMaxSuppressionV3", new TFNonMaxSuppressionParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_NON_MAX_SUPPRESSION_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_NON_MAX_SUPPRESSION_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFNonMaxSuppressionParser : public TFNodeParser {
public:
TFNonMaxSuppressionParser() = default;
~TFNonMaxSuppressionParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_NON_MAX_SUPPRESSION_PARSER_H_

View File

@ -0,0 +1,89 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_pad_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFPadParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map, PrimitiveC **primitiveC,
std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF PadParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::PadT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
if (tf_op.op() == "Pad") {
attr->paddingMode = schema::PaddingMode_CONSTANT;
attr->constantValue = 0.0f;
} else if (tf_op.op() == "MirrorPad") {
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "mode", &attr_value)) {
MS_LOG(ERROR) << "The axis attr should be specified";
return RET_ERROR;
}
if (attr_value.s() == "SYMMETRIC") {
attr->paddingMode = schema::PaddingMode_SYMMETRIC;
} else if (attr_value.s() == "REFLECT") {
attr->paddingMode = schema::PaddingMode_REFLECT;
} else {
MS_LOG(ERROR) << "padding mode:" << attr_value.s() << " don't support";
return RET_ERROR;
}
}
primitive->value.type = schema::PrimitiveType_Pad;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 1, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfPadParser("Pad", new TFPadParser());
TFNodeRegistrar g_tfMirrorPadParser("MirrorPad", new TFPadParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_PAD_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_PAD_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFPadParser : public TFNodeParser {
public:
TFPadParser() = default;
~TFPadParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_PAD_PARSER_H_

View File

@ -0,0 +1,86 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_reverse_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFReverseParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map, PrimitiveC **primitiveC,
std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF ReverseParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::ReverseT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
auto axis = GetConstInputNode(tf_node_map, tf_op.input(1));
if (axis == nullptr) {
MS_LOG(ERROR) << "Find axis failed";
return RET_ERROR;
}
if (!TensorFlowUtils::FindAttrValue(*axis, "value", &attr_value)) {
MS_LOG(ERROR) << "The value attr should be specified";
return RET_ERROR;
}
auto tensor_proto = attr_value.tensor();
if (tensor_proto.int_val_size() > 0) {
for (int i = 0; i < tensor_proto.int_val_size(); ++i) {
attr->axis.push_back(tensor_proto.int_val(i));
}
} else {
auto data_num = tensor_proto.tensor_content().size() / sizeof(int32_t);
auto data = reinterpret_cast<const int32_t *>(tensor_proto.tensor_content().data());
for (size_t i = 0; i < data_num; ++i) {
attr->axis.push_back(data[i]);
}
}
primitive->value.type = schema::PrimitiveType_Reverse;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfReverseV2Parser("ReverseV2", new TFReverseParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_REVERSE_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_REVERSE_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFReverseParser : public TFNodeParser {
public:
TFReverseParser() = default;
~TFReverseParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_REVERSE_PARSER_H_

View File

@ -0,0 +1,63 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_size_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFSizeParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map, PrimitiveC **primitiveC,
std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF SizeParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::SizeT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_Size;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfSizeParser("Size", new TFSizeParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_SIZE_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_SIZE_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFSizeParser : public TFNodeParser {
public:
TFSizeParser() = default;
~TFSizeParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_SIZE_PARSER_H_

View File

@ -0,0 +1,105 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_slice_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFSliceParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map, PrimitiveC **primitiveC,
std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF SliceParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::SliceT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
// begin
tensorflow::AttrValue attr_value;
auto begin_node = GetConstInputNode(tf_node_map, tf_op.input(1));
if (begin_node == nullptr) {
MS_LOG(ERROR) << "Find StridedSlice input begin failed";
return RET_ERROR;
}
if (!TensorFlowUtils::FindAttrValue(*begin_node, "value", &attr_value)) {
MS_LOG(ERROR) << "The value attr should be specified";
return RET_ERROR;
}
auto tensor_proto = attr_value.tensor();
if (tensor_proto.int_val_size() > 0) {
for (int i = 0; i < tensor_proto.int_val_size(); ++i) {
attr->begin.push_back(tensor_proto.int_val(i));
}
} else {
auto data_num = tensor_proto.tensor_content().size() / sizeof(int32_t);
auto data = reinterpret_cast<const int32_t *>(tensor_proto.tensor_content().data());
for (size_t i = 0; i < data_num; ++i) {
attr->begin.push_back(data[i]);
}
}
// axes
std::vector<int> axes;
axes.clear();
for (size_t i = 0; i < attr->begin.size(); ++i) {
axes.push_back(i);
}
attr->axes = axes;
primitive->value.type = schema::PrimitiveType_Slice;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 1, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 2, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfSliceParser("Slice", new TFSliceParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_SLICE_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_SLICE_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFSliceParser : public TFNodeParser {
public:
TFSliceParser() = default;
~TFSliceParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_SLICE_PARSER_H_

View File

@ -0,0 +1,76 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_topk_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFTopKParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map, PrimitiveC **primitiveC,
std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF TopKParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::TopKT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
// sorted
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "sorted", &attr_value)) {
MS_LOG(ERROR) << "The begin_mask attr should be specified";
return RET_ERROR;
}
attr->sorted = attr_value.i();
primitive->value.type = schema::PrimitiveType_TopK;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 2;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
status = AddOpInput(tf_op, 1, inputs);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add Op input failed.";
return status;
}
return status;
}
TFNodeRegistrar g_tfTopKV2Parser("TopKV2", new TFTopKParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TOPK_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TOPK_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFTopKParser : public TFNodeParser {
public:
TFTopKParser() = default;
~TFTopKParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TOPK_PARSER_H_