forked from mindspore-Ecosystem/mindspore
!7872 Add log1p operator at GPU back-end and move erf and erf to the unary_op list
Merge pull request !7872 from peixu_ren/custom_pp_ops
This commit is contained in:
commit
9c2704030f
|
@ -1,33 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "erf_impl.cuh"
|
||||
template <typename T>
|
||||
__global__ void ErfKernel(T *input, T *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = static_cast<T>(erf(static_cast<float>(input[i])));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Erf(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
ErfKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
|
||||
template void Erf<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Erf<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
|
@ -1,25 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_ERFIMPL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_ERFIMPL_H_
|
||||
|
||||
#include <curand_kernel.h>
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
void Erf(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_ERFIMPL_H_
|
|
@ -1,33 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "erfc_impl.cuh"
|
||||
template <typename T>
|
||||
__global__ void ErfcKernel(T *input, T *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = static_cast<T>(erfc(static_cast<float>(input[i])));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Erfc(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
ErfcKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
|
||||
template void Erfc<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
|
||||
template void Erfc<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
|
|
@ -1,25 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_ERFIMPL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_ERFIMPL_H_
|
||||
|
||||
#include <curand_kernel.h>
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
void Erfc(T *input, T *output, size_t count, cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_ERFIMPL_H_
|
|
@ -44,6 +44,27 @@ __global__ void LogarithmKernel(const half *input, half *output, const size_t co
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void Log1pKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = static_cast<T>(log1p(static_cast<double>(input[i])));
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void ErfKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = static_cast<T>(erf(static_cast<float>(input[i])));
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void ErfcKernel(const T *input, T *output, const size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
output[i] = static_cast<T>(erfc(static_cast<float>(input[i])));
|
||||
}
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
__global__ void NegativeKernel(const T *input, T *output, const size_t count) {
|
||||
T neg_one = -1;
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
|
@ -193,6 +214,21 @@ void Negative(const T *input, T *output, const size_t count, cudaStream_t cuda_s
|
|||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Log1p(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
Log1pKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Erf(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
ErfKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Erfc(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
ErfcKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
}
|
||||
template <typename T>
|
||||
void Reciprocal(const T *input, T *output, const size_t count, cudaStream_t cuda_stream) {
|
||||
ReciprocalKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
|
||||
return;
|
||||
|
@ -256,6 +292,9 @@ void Floor(const T *input, T *output, const size_t count, cudaStream_t cuda_stre
|
|||
template void Exponential<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Logarithm<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Negative<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Log1p<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Erf<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Erfc<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<float>(const float *input, float *output, const size_t count, cudaStream_t cuda_stream);
|
||||
|
@ -270,6 +309,9 @@ template void Floor<float>(const float *input, float *output, const size_t count
|
|||
template void Exponential<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Logarithm<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Negative<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Log1p<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Erf<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Erfc<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Reciprocal<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Square<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template void Sqrt<half>(const half *input, half *output, const size_t count, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -23,6 +23,12 @@ void Exponential(const T *input, T *output, const size_t count, cudaStream_t cud
|
|||
template <typename T>
|
||||
void Logarithm(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Log1p(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Erf(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Erfc(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Negative(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
template <typename T>
|
||||
void Reciprocal(const T *input, T *output, const size_t count, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -1,26 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/math/erf_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(Erf, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ErfGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Erf, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ErfGpuKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -1,92 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ERF_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ERF_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/erf_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class ErfGpuKernel : public GpuKernel {
|
||||
public:
|
||||
ErfGpuKernel() : input_size_(sizeof(T)), output_size_(sizeof(T)) {}
|
||||
~ErfGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
VARIABLE_NOT_USED(workspace);
|
||||
T *input_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
Erf(input_addr, output_addr, outputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but erf needs 3 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but erf needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < output_shape.size(); i++) {
|
||||
output_size_ *= output_shape[i];
|
||||
}
|
||||
if (input_size_ != output_size_) {
|
||||
MS_LOG(ERROR) << "Input size and output should be equal for Erf.";
|
||||
return false;
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ERF_GPU_KERNEL_H_
|
|
@ -1,26 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/math/erfc_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(Erfc, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ErfcGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Erfc, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ErfcGpuKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -1,92 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ERF_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ERF_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/erfc_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class ErfcGpuKernel : public GpuKernel {
|
||||
public:
|
||||
ErfcGpuKernel() : input_size_(sizeof(T)), output_size_(sizeof(T)) {}
|
||||
~ErfcGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
VARIABLE_NOT_USED(workspace);
|
||||
T *input_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
Erfc(input_addr, output_addr, outputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but erfc needs 3 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but erfc needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < output_shape.size(); i++) {
|
||||
output_size_ *= output_shape[i];
|
||||
}
|
||||
if (input_size_ != output_size_) {
|
||||
MS_LOG(ERROR) << "Input size and output should be equal for Erfc.";
|
||||
return false;
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ERF_GPU_KERNEL_H_
|
|
@ -30,6 +30,18 @@ MS_REG_GPU_KERNEL_ONE(Neg, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutp
|
|||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Neg, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Log1p, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Log1p, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Erf, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Erf, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Erfc, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Erfc, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
UnaryOpGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Reciprocal, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnaryOpGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Reciprocal, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
|
|
|
@ -30,6 +30,9 @@ namespace kernel {
|
|||
enum UnaryOptype {
|
||||
UNARY_OP_EXP = 0,
|
||||
UNARY_OP_LOG,
|
||||
UNARY_OP_LOG1P,
|
||||
UNARY_OP_ERF,
|
||||
UNARY_OP_ERFC,
|
||||
UNARY_OP_NEG,
|
||||
UNARY_OP_RECIPROCAL,
|
||||
UNARY_OP_ZEROSLIKE,
|
||||
|
@ -46,6 +49,9 @@ enum UnaryOptype {
|
|||
};
|
||||
static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY_OP_EXP},
|
||||
{"Log", UNARY_OP_LOG},
|
||||
{"Log1p", UNARY_OP_LOG1P},
|
||||
{"Erf", UNARY_OP_ERF},
|
||||
{"Erfc", UNARY_OP_ERFC},
|
||||
{"Neg", UNARY_OP_NEG},
|
||||
{"Reciprocal", UNARY_OP_RECIPROCAL},
|
||||
{"ZerosLike", UNARY_OP_ZEROSLIKE},
|
||||
|
@ -88,6 +94,18 @@ class UnaryOpGpuKernel : public GpuKernel {
|
|||
Logarithm(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_LOG1P: {
|
||||
Log1p(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_ERF: {
|
||||
Erf(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_ERFC: {
|
||||
Erfc(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
case UNARY_OP_NEG: {
|
||||
Negative(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
class NetLog1p(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetLog1p, self).__init__()
|
||||
self.log1p = P.Log1p()
|
||||
|
||||
def construct(self, x):
|
||||
return self.log1p(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_log1p_fp32():
|
||||
log1p = NetLog1p()
|
||||
x = np.random.rand(3, 8).astype(np.float32)
|
||||
output = log1p(Tensor(x, dtype=dtype.float32))
|
||||
expect = np.log1p(x)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect) < tol).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_log1p_fp16():
|
||||
log1p = NetLog1p()
|
||||
x = np.random.rand(3, 8).astype(np.float16)
|
||||
output = log1p(Tensor(x, dtype=dtype.float16))
|
||||
expect = np.log1p(x)
|
||||
tol = 1e-3
|
||||
assert (np.abs(output.asnumpy() - expect) < tol).all()
|
Loading…
Reference in New Issue