add akg load_im2col

add load_im2col

add load_im2col

add load_im2col
This commit is contained in:
cmy_melody 2021-08-01 18:42:06 +08:00
parent 9720bab9c9
commit 9bf4b67b64
5 changed files with 93 additions and 1 deletions

View File

@ -112,6 +112,12 @@ void KernelQuery(const CNodePtr &kernel_node, std::vector<std::shared_ptr<kernel
if (IsPrimitiveCNode(kernel_node, kPrimProdForceSeA)) {
kernel_type = KernelType::AKG_KERNEL;
}
const PrimitivePtr kPrimLoadIm2Col = std::make_shared<Primitive>("LoadIm2Col");
if (IsPrimitiveCNode(kernel_node, kPrimLoadIm2Col)) {
kernel_type = KernelType::AKG_KERNEL;
} // use LoadIm2Col only for THOR optimizer
switch (kernel_type) {
case KernelType::AKG_KERNEL:
AkgMetadataInfo(kernel_node, kernel_info_list);

View File

@ -44,5 +44,6 @@ from .sqrt import _sqrt_akg
from .square import _square_akg
from .sub import _sub_akg
from .prod_force_se_a import _prod_force_se_a_akg
from .load_im2col import _load_im2col_akg
# Please insert op register in lexicographical order of the filename.

View File

@ -0,0 +1,33 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LoadIm2Col op"""
from mindspore.ops.op_info_register import op_info_register, AkgAscendRegOp, DataType as DT
op_info = AkgAscendRegOp("LoadIm2Col") \
.fusion_type("OPAQUE") \
.input(0, "x") \
.output(0, "output") \
.attr("ksizes", "required", "listInt") \
.attr("strides", "required", "listInt") \
.dtype_format(DT.F16_5HD, DT.F16_Default) \
.dtype_format(DT.F32_5HD, DT.F32_Default) \
.get_op_info()
@op_info_register(op_info)
def _load_im2col_akg():
"""im2col Akg register"""
return

View File

@ -96,7 +96,8 @@ from .other_ops import (Assign, InplaceAssign, IOU, BoundingBoxDecode, BoundingB
from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg2Col, CusMatMulCubeDenseLeft,
CusMatMulCubeFraczRightMul, CusMatMulCube, CusMatrixCombine, CusTranspose02314,
CusMatMulCubeDenseRight,
CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle,
CusMatMulCubeFraczLeftCast, Im2Col, LoadIm2Col, UpdateThorGradient, Cholesky, CholeskyTrsm,
DetTriangle,
ProdForceSeA)
from .sparse_ops import (SparseToDense, SparseTensorDenseMatmul)
from ._embedding_cache_ops import (CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter,

View File

@ -31,6 +31,7 @@ __all__ = ["CusBatchMatMul",
"CusTranspose02314",
"CusMatMulCubeDenseRight",
"CusMatMulCubeFraczLeftCast",
"LoadIm2Col"
]
@ -362,6 +363,7 @@ class CusTranspose02314(PrimitiveWithInfer):
def get_bprop(self):
"""Get backprop for CusTranspose02314."""
def bprop(x, out, dout):
return (C.zeros_like(x),)
@ -529,6 +531,55 @@ class Im2Col(PrimitiveWithInfer):
return x_dtype
class LoadIm2Col(PrimitiveWithInfer):
"""
extracts image patches from image.
The rank of input_x1 must be `4`, data_format is "NCHW".
Only supports when C is divisible by 16.
Inputs:
- **input_x1** (Tensor) - The feature map.
The shape of the tensor is :math:`(N, C, H, W)`.
Outputs:
Tensor.
Examples:
>>> input_x = Tensor(np.random.rand(32, 16, 224, 224).astype(np.float16))
>>> img2col = ops.LoadIm2Col(kernel_size=(7,7), stride=(2,2))
>>> output = img2col(input_x)
"""
@prim_attr_register
def __init__(self,
ksizes,
strides,
pad_mode="same",
dilates=(1, 1, 1, 1)):
"""Initialize LoadIm2Col"""
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
self.ksizes = ksizes
self.strides = strides
self.pad_mode = validator.check_string(pad_mode, ['same'], 'pad_mode', self.name)
self.dilation = dilates
def infer_shape(self, data1_shape):
bs, c, h, w = data1_shape
stride_h, stride_w = self.strides
k_w, k_h = self.ksizes
h_out = math.ceil(h / stride_h)
w_out = math.ceil(w / stride_w)
m = h_out * w_out
if m % 16 != 0:
shape = [(bs * m) // 16, (c * k_h * k_w) // 16, 16, 16]
else:
shape = [bs, m // 16, (c * k_h * k_w) // 16, 16, 16]
return shape
def infer_dtype(self, data1_dtype):
return data1_dtype
class UpdateThorGradient(PrimitiveWithInfer):
"""
Updates Thor Gradient with Approximate Fisher info matrix(for GPU backend).