forked from mindspore-Ecosystem/mindspore
!4171 Add lazy adam support for PS
Merge pull request !4171 from ZPaC/master-supports-lazy-adam-in-ps
This commit is contained in:
commit
99ffe64bb8
|
@ -56,9 +56,11 @@ constexpr char kMomentum[] = "momentum";
|
|||
|
||||
constexpr char kApplyMomentum[] = "ApplyMomentum";
|
||||
constexpr char kSparseAdam[] = "Adam";
|
||||
constexpr char kSparseLazyAdam[] = "LazyAdam";
|
||||
constexpr char kSparseFtrl[] = "Ftrl";
|
||||
constexpr char kApplyMomentumOp[] = "Momentum";
|
||||
constexpr char kSparseAdamOp[] = "Adam";
|
||||
constexpr char kSparseLazyAdamOp[] = "LazyAdam";
|
||||
constexpr char kSparseFtrlOp[] = "FTRL";
|
||||
|
||||
constexpr int kInitWeightsCmd = 10;
|
||||
|
|
|
@ -42,6 +42,7 @@
|
|||
#include "backend/kernel_compiler/kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/cpu/ps/pserver_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/ps/sparse_apply_adam_ps_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/ps/sparse_apply_lazy_adam_ps_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/ps/sparse_apply_ftrl_ps_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/ps/apply_momentum_ps_kernel.h"
|
||||
|
@ -374,6 +375,11 @@ void ParameterServer<T>::InitOptimInputsShape(const Keys &keys, const Values &va
|
|||
const CNodePtr cnode = GetCNode(optim_op_name);
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
if (optim_name == kSparseAdam) {
|
||||
std::shared_ptr<PServerKernel> optimizer =
|
||||
std::make_shared<kernel::ps::SparseApplyAdamPSKernel>(rank_id_, pserver_num_);
|
||||
optimizer->InitKernel(cnode, optim_inputs_shape_[key]);
|
||||
optimizers_[key] = optimizer;
|
||||
} else if (optim_name == kSparseLazyAdam) {
|
||||
std::shared_ptr<PServerKernel> optimizer =
|
||||
std::make_shared<kernel::ps::SparseApplyLazyAdamPSKernel>(rank_id_, pserver_num_);
|
||||
optimizer->InitKernel(cnode, optim_inputs_shape_[key]);
|
||||
|
|
|
@ -25,19 +25,22 @@ namespace ps {
|
|||
std::unordered_map<std::string, int> Util::optimizer_to_ids{
|
||||
{kApplyMomentum, 0},
|
||||
{kSparseAdam, 1},
|
||||
{kSparseFtrl, 2},
|
||||
{kSparseLazyAdam, 2},
|
||||
{kSparseFtrl, 3},
|
||||
};
|
||||
|
||||
std::unordered_map<int, std::string> Util::id_to_optimizers{
|
||||
{0, kApplyMomentum},
|
||||
{1, kSparseAdam},
|
||||
{2, kSparseFtrl},
|
||||
{2, kSparseLazyAdam},
|
||||
{3, kSparseFtrl},
|
||||
};
|
||||
|
||||
std::unordered_map<int, std::string> Util::id_to_optimizer_nodes{
|
||||
{0, kApplyMomentumOp},
|
||||
{1, kSparseAdamOp},
|
||||
{2, kSparseFtrlOp},
|
||||
{2, kSparseLazyAdamOp},
|
||||
{3, kSparseFtrlOp},
|
||||
};
|
||||
|
||||
bool Util::IsParamServerMode() { return IsRoleOfWorker() || IsRoleOfPServer() || IsRoleOfScheduler(); }
|
||||
|
|
|
@ -27,23 +27,38 @@ from .optimizer import Optimizer
|
|||
_lazy_adam_opt = C.MultitypeFuncGraph("lazy_adam_opt")
|
||||
|
||||
|
||||
@_lazy_adam_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor",
|
||||
"RowTensor", "Tensor", "Tensor", "Tensor")
|
||||
def _run_opt_with_sparse(opt, sparse_opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params,
|
||||
moment1, moment2):
|
||||
@_lazy_adam_opt.register("Function", "Function", "Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor",
|
||||
"Tensor", "Tensor", "RowTensor", "Tensor", "Tensor", "Tensor", "Bool")
|
||||
def _run_opt_with_sparse(opt, sparse_opt, push, pull, beta1_power, beta2_power, beta1, beta2, eps,
|
||||
lr, gradient, params, moment1, moment2, ps_parameter):
|
||||
"""Apply sparse lazy adam optimizer to the weight parameter when the gradient is sparse."""
|
||||
success = True
|
||||
indices = gradient.indices
|
||||
values = gradient.values
|
||||
if ps_parameter:
|
||||
op_shape = P.Shape()
|
||||
shapes = (op_shape(params), op_shape(moment1), op_shape(moment2),
|
||||
op_shape(beta1_power), op_shape(beta2_power), op_shape(lr), op_shape(beta1),
|
||||
op_shape(beta2), op_shape(eps), op_shape(values), op_shape(indices))
|
||||
success = F.depend(success, pull(push((beta1_power, beta2_power, lr, beta1, beta2,
|
||||
eps, values, indices), shapes), params))
|
||||
else:
|
||||
success = F.depend(success, sparse_opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
|
||||
eps, gradient.values, gradient.indices))
|
||||
eps, values, indices))
|
||||
return success
|
||||
|
||||
|
||||
@_lazy_adam_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor",
|
||||
"Tensor", "Tensor", "Tensor")
|
||||
def _run_opt_with_one_number(opt, sparse_opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params,
|
||||
moment1, moment2):
|
||||
"""Apply adam optimizer to the weight parameter using Tensor."""
|
||||
@_lazy_adam_opt.register("Function", "Function", "Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor",
|
||||
"Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool")
|
||||
def _run_opt_with_one_number(opt, sparse_opt, push, pull, beta1_power, beta2_power, beta1, beta2, eps,
|
||||
lr, gradient, params, moment1, moment2, ps_parameter):
|
||||
"""Apply lazy adam optimizer to the weight parameter using Tensor."""
|
||||
success = True
|
||||
if ps_parameter:
|
||||
op_shape = P.Shape()
|
||||
success = F.depend(success, pull(push((beta1_power, beta2_power, lr, beta1, beta2, eps, gradient),
|
||||
(op_shape(params), op_shape(moment1), op_shape(moment2))), params))
|
||||
else:
|
||||
success = F.depend(success, opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
|
||||
eps, gradient))
|
||||
return success
|
||||
|
@ -173,7 +188,7 @@ class LazyAdam(Optimizer):
|
|||
self.beta2 = Tensor(beta2, mstype.float32)
|
||||
self.beta1_power = Parameter(initializer(1, [1], mstype.float32), name="beta1_power")
|
||||
self.beta2_power = Parameter(initializer(1, [1], mstype.float32), name="beta2_power")
|
||||
self.eps = eps
|
||||
self.eps = Tensor(eps, mstype.float32)
|
||||
self.use_nesterov = use_nesterov
|
||||
self.use_locking = use_locking
|
||||
|
||||
|
@ -184,6 +199,10 @@ class LazyAdam(Optimizer):
|
|||
self.opt = P.Adam(use_locking, use_nesterov)
|
||||
self.sparse_opt = P.FusedSparseLazyAdam(use_locking, use_nesterov)
|
||||
|
||||
self._ps_pull = P.Pull()
|
||||
self._ps_push = P.Push("Adam", [0, 1, 2])
|
||||
self._ps_push.add_prim_attr("use_nesterov", use_nesterov)
|
||||
|
||||
def construct(self, gradients):
|
||||
gradients = self.decay_weight(gradients)
|
||||
gradients = self.scale_grad(gradients)
|
||||
|
@ -193,11 +212,11 @@ class LazyAdam(Optimizer):
|
|||
self.beta2_power = self.beta2_power * self.beta2
|
||||
|
||||
if self.is_group_lr:
|
||||
success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt, self.beta1_power,
|
||||
self.beta2_power, self.beta1, self.beta2, self.eps),
|
||||
lr, gradients, self.parameters, self.moment1, self.moment2)
|
||||
success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.beta1_power, self.beta2_power, self.beta1, self.beta2, self.eps),
|
||||
lr, gradients, self.parameters, self.moment1, self.moment2, self.ps_parameters)
|
||||
else:
|
||||
success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt, self.beta1_power,
|
||||
self.beta2_power, self.beta1, self.beta2, self.eps, lr),
|
||||
gradients, self.parameters, self.moment1, self.moment2)
|
||||
success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.beta1_power, self.beta2_power, self.beta1, self.beta2, self.eps, lr),
|
||||
gradients, self.parameters, self.moment1, self.moment2, self.ps_parameters)
|
||||
return success
|
||||
|
|
|
@ -328,20 +328,13 @@ class TrainStepWrap(nn.Cell):
|
|||
self.weights_w = ParameterTuple(weights_w)
|
||||
self.weights_d = ParameterTuple(weights_d)
|
||||
|
||||
if host_device_mix and is_auto_parallel:
|
||||
if (host_device_mix and is_auto_parallel) or parameter_server:
|
||||
self.optimizer_d = LazyAdam(
|
||||
self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens)
|
||||
self.optimizer_w = FTRL(learning_rate=5e-2, params=self.weights_w,
|
||||
l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens)
|
||||
self.optimizer_w.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
self.optimizer_d.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
elif parameter_server:
|
||||
self.optimizer_d = Adam(
|
||||
self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens)
|
||||
self.optimizer_w = FTRL(learning_rate=5e-2, params=self.weights_w,
|
||||
l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens)
|
||||
self.optimizer_w.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
self.optimizer_d.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
else:
|
||||
self.optimizer_d = Adam(
|
||||
self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens)
|
||||
|
|
Loading…
Reference in New Issue