forked from mindspore-Ecosystem/mindspore
add order function in group params
This commit is contained in:
parent
6796705c0e
commit
85a06b00c6
|
@ -144,10 +144,12 @@ class Adam(Optimizer):
|
|||
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
|
||||
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Args:
|
||||
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
|
||||
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
|
||||
"lr" and "weight_decay" are the keys can be parsed.
|
||||
"lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value should be a list of `Parameter`.
|
||||
|
||||
|
@ -157,6 +159,11 @@ class Adam(Optimizer):
|
|||
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
|
||||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' but not in any group will use default learning rate and default weight
|
||||
decay.
|
||||
|
||||
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
|
||||
Iterable or a Tensor and the dims of the Tensor is 1,
|
||||
use dynamic learning rate, then the i-th step will
|
||||
|
@ -193,13 +200,16 @@ class Adam(Optimizer):
|
|||
>>>
|
||||
>>> #2) Use parameter groups and set different values
|
||||
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'lr': 0.01},
|
||||
>>> {'params': no_conv_params}]
|
||||
>>> bias_params = list(filter(lambda x: 'bias' in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
>>> {'params': bias_params, 'lr': 0.01},
|
||||
>>> {'order_params': net.trainable_params()}]
|
||||
>>> opt = nn.Adam(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> # the conv_params's parameters will use a learning rate of 0.01 and a weight decay of 0.01
|
||||
>>> # the no_cov_params's parameters don't set learning and weight decay. So they will use a
|
||||
>>> # learning rate of 0.1 and a weight decay of 0.0.
|
||||
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
|
||||
>>> # The bias_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
>>> # The parameters which in the value of 'order_params' but not in any group will use a learning rate
|
||||
>>> # of default value 0.1 and a weight decay of default value 0.0.
|
||||
>>>
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim)
|
||||
|
|
|
@ -45,10 +45,12 @@ class Momentum(Optimizer):
|
|||
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
|
||||
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Args:
|
||||
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
|
||||
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
|
||||
"lr" and "weight_decay" are the keys can be parsed.
|
||||
"lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value should be a list of `Parameter`.
|
||||
|
||||
|
@ -58,6 +60,11 @@ class Momentum(Optimizer):
|
|||
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
|
||||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' but not in any group will use default learning rate and default weight
|
||||
decay.
|
||||
|
||||
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
|
||||
Iterable or a Tensor and the dims of the Tensor is 1,
|
||||
use dynamic learning rate, then the i-th step will
|
||||
|
@ -86,13 +93,16 @@ class Momentum(Optimizer):
|
|||
>>>
|
||||
>>> #2) Use parameter groups and set different values
|
||||
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'lr': 0.01},
|
||||
>>> {'params': no_conv_params}]
|
||||
>>> bias_params = list(filter(lambda x: 'bias' in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
>>> {'params': bias_params, 'lr': 0.01},
|
||||
>>> {'order_params': net.trainable_params()}]
|
||||
>>> opt = nn.Momentum(group_params, learning_rate=0.1, momentum=0.9, weight_decay=0.0)
|
||||
>>> # the conv_params's parameters will use a learning rate of 0.01 and a weight decay of 0.01
|
||||
>>> # the no_cov_params's parameters don't set learning and weight decay. So they will use a
|
||||
>>> # learning rate of 0.1 and a weight decay of 0.0.
|
||||
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
|
||||
>>> # The bias_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
>>> # The parameters which in the value of 'order_params' but not in any group will use a learning rate
|
||||
>>> # of default value 0.1 and a weight decay of default value 0.0.
|
||||
>>>
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
|
|
|
@ -48,6 +48,8 @@ class Optimizer(Cell):
|
|||
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
|
||||
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Args:
|
||||
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
|
||||
Iterable or a Tensor and the dims of the Tensor is 1,
|
||||
|
@ -60,7 +62,7 @@ class Optimizer(Cell):
|
|||
converted to float.
|
||||
parameters (Union[list[Parameter], list[dict]]): When the `parameters` is a list of `Parameter` which will be
|
||||
updated, the element in `parameters` should be class `Parameter`. When the `parameters` is a list of `dict`,
|
||||
the "params", "lr" and "weight_decay" are the keys can be parsed.
|
||||
the "params", "lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value should be a list of `Parameter`.
|
||||
|
||||
|
@ -70,6 +72,11 @@ class Optimizer(Cell):
|
|||
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
|
||||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' but not in any group will use default learning rate and default weight
|
||||
decay.
|
||||
|
||||
weight_decay (float): A floating point value for the weight decay. It should be equal to or greater than 0.
|
||||
If the type of `weight_decay` input is int, it will be converted to float. Default: 0.0.
|
||||
loss_scale (float): A floating point value for the loss scale. It should be greater than 0. If the
|
||||
|
@ -103,6 +110,7 @@ class Optimizer(Cell):
|
|||
|
||||
self.is_group = False
|
||||
self.is_group_lr = False
|
||||
self.is_group_params_ordered = False
|
||||
self.loss_scale = loss_scale
|
||||
if isinstance(learning_rate, int):
|
||||
learning_rate = float(learning_rate)
|
||||
|
@ -210,9 +218,8 @@ class Optimizer(Cell):
|
|||
raise TypeError("Learning rate should be float, Tensor or Iterable.")
|
||||
return lr
|
||||
|
||||
def _init_group_params(self, parameters, learning_rate, weight_decay):
|
||||
"""Init learning rate or weight decay in group params."""
|
||||
origin_dynamic_lr = self.dynamic_lr
|
||||
def _parse_group_params(self, parameters, learning_rate):
|
||||
"""Parse group params."""
|
||||
if self.dynamic_lr:
|
||||
dynamic_lr_length = learning_rate.size()
|
||||
else:
|
||||
|
@ -220,6 +227,15 @@ class Optimizer(Cell):
|
|||
|
||||
for group_param in parameters:
|
||||
lr_length = dynamic_lr_length
|
||||
if 'order_params' in group_param.keys():
|
||||
if len(group_param.keys()) > 1:
|
||||
raise ValueError("The order params dict in group parameters should "
|
||||
"only include the 'order_params' key.")
|
||||
if not isinstance(group_param['order_params'], Iterable):
|
||||
raise TypeError("The value of 'order_params' should be an Iterable type.")
|
||||
self.is_group_params_ordered = True
|
||||
continue
|
||||
|
||||
if 'lr' in group_param.keys():
|
||||
self.is_group_lr = True
|
||||
self._get_single_lr(group_param['lr'])
|
||||
|
@ -229,10 +245,20 @@ class Optimizer(Cell):
|
|||
elif isinstance(group_param['lr'], Tensor):
|
||||
lr_length = group_param['lr'].size()
|
||||
self.dynamic_lr = True
|
||||
|
||||
if dynamic_lr_length not in (lr_length, 0):
|
||||
raise ValueError("The dynamic learning rate in group should be the same size.")
|
||||
dynamic_lr_length = lr_length
|
||||
|
||||
if not group_param['params']:
|
||||
raise ValueError("Optimizer got an empty group parameter list.")
|
||||
|
||||
dynamic_lr_length = lr_length
|
||||
self.dynamic_lr_length = dynamic_lr_length
|
||||
|
||||
def _init_group_params(self, parameters, learning_rate, weight_decay):
|
||||
"""Init learning rate or weight decay in group params."""
|
||||
origin_dynamic_lr = self.dynamic_lr
|
||||
self._parse_group_params(parameters, learning_rate)
|
||||
if self.dynamic_lr and not origin_dynamic_lr:
|
||||
self.gather = P.GatherV2()
|
||||
self.assignadd = P.AssignAdd()
|
||||
|
@ -240,20 +266,20 @@ class Optimizer(Cell):
|
|||
|
||||
params_store = []
|
||||
for group_param in parameters:
|
||||
if not group_param['params']:
|
||||
raise ValueError("Optimizer got an empty parameter list.")
|
||||
if 'order_params' in group_param.keys():
|
||||
ordered_parameters = group_param['order_params']
|
||||
continue
|
||||
|
||||
self.group_params += group_param['params']
|
||||
if 'lr' in group_param.keys():
|
||||
params_dynamic_lr = isinstance(group_param['lr'], (Iterable, Tensor))
|
||||
|
||||
if self.dynamic_lr and not params_dynamic_lr:
|
||||
lr = Tensor(np.array([group_param['lr']] * dynamic_lr_length).astype(np.float32))
|
||||
lr = Tensor(np.array([group_param['lr']] * self.dynamic_lr_length).astype(np.float32))
|
||||
else:
|
||||
lr = self._get_single_lr(group_param['lr'])
|
||||
else:
|
||||
if self.dynamic_lr and not origin_dynamic_lr:
|
||||
lr = Tensor(np.array([self.scalar_lr] * dynamic_lr_length).astype(np.float32))
|
||||
lr = Tensor(np.array([self.scalar_lr] * self.dynamic_lr_length).astype(np.float32))
|
||||
else:
|
||||
lr = learning_rate
|
||||
|
||||
|
@ -273,10 +299,33 @@ class Optimizer(Cell):
|
|||
validator.check_value_type("parameter", param, [Parameter], self.cls_name)
|
||||
if param.name in params_store:
|
||||
raise RuntimeError(f"The {param.name} parameter has appeared in parameter groups.")
|
||||
|
||||
params_store.append(param.name)
|
||||
self.group_lr.append(Parameter(lr, name="lr_" + param.name))
|
||||
self.group_weight_decay.append(weight_decay_)
|
||||
|
||||
if self.is_group_params_ordered:
|
||||
self._order_and_adjust_group_params(ordered_parameters, learning_rate, weight_decay)
|
||||
|
||||
def _order_and_adjust_group_params(self, ordered_parameters, learning_rate, weight_decay):
|
||||
"""
|
||||
Order group parameter, learning rate and weight decay in group params. And assign the parameters
|
||||
which in the value of 'order_params' but not in any group to default value.
|
||||
"""
|
||||
params_length = len(ordered_parameters)
|
||||
ordered_learning_rate = [Parameter(learning_rate, name="lr_" + param.name) for param in ordered_parameters]
|
||||
ordered_weight_decay = [weight_decay * self.loss_scale] * params_length
|
||||
params_name = [param.name for param in ordered_parameters]
|
||||
|
||||
for param, lr, wd in zip(self.group_params, self.group_lr, self.group_weight_decay):
|
||||
index = params_name.index(param.name)
|
||||
ordered_learning_rate[index] = lr
|
||||
ordered_weight_decay[index] = wd
|
||||
|
||||
self.group_params = list(ordered_parameters)
|
||||
self.group_lr = ordered_learning_rate
|
||||
self.group_weight_decay = ordered_weight_decay
|
||||
|
||||
def get_lr(self):
|
||||
"""
|
||||
Get the learning rate of current step.
|
||||
|
|
|
@ -51,6 +51,8 @@ class RMSProp(Optimizer):
|
|||
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
|
||||
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Update `params` according to the RMSProp algorithm.
|
||||
|
||||
The equation is as follows:
|
||||
|
@ -93,7 +95,7 @@ class RMSProp(Optimizer):
|
|||
Args:
|
||||
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
|
||||
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
|
||||
"lr" and "weight_decay" are the keys can be parsed.
|
||||
"lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value should be a list of `Parameter`.
|
||||
|
||||
|
@ -103,6 +105,11 @@ class RMSProp(Optimizer):
|
|||
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
|
||||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' but not in any group will use default learning rate and default weight
|
||||
decay.
|
||||
|
||||
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
|
||||
Iterable or a Tensor and the dims of the Tensor is 1,
|
||||
use dynamic learning rate, then the i-th step will
|
||||
|
@ -133,13 +140,16 @@ class RMSProp(Optimizer):
|
|||
>>>
|
||||
>>> #2) Use parameter groups and set different values
|
||||
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'lr': 0.01},
|
||||
>>> {'params': no_conv_params}]
|
||||
>>> bias_params = list(filter(lambda x: 'bias' in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
>>> {'params': bias_params, 'lr': 0.01},
|
||||
>>> {'order_params': net.trainable_params()}]
|
||||
>>> opt = nn.RMSProp(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> # the conv_params's parameters will use a learning rate of 0.01 and a weight decay of 0.01
|
||||
>>> # the no_cov_params's parameters don't set learning and weight decay. So they will use a
|
||||
>>> # learning rate of 0.1 and a weight decay of 0.0.
|
||||
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
|
||||
>>> # The bias_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
>>> # The parameters which in the value of 'order_params' but not in any group will use a learning rate
|
||||
>>> # of default value 0.1 and a weight decay of default value 0.0.
|
||||
>>>
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim)
|
||||
|
|
|
@ -47,10 +47,12 @@ class SGD(Optimizer):
|
|||
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
|
||||
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Args:
|
||||
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
|
||||
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
|
||||
"lr" and "weight_decay" are the keys can be parsed.
|
||||
"lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value should be a list of `Parameter`.
|
||||
|
||||
|
@ -60,6 +62,11 @@ class SGD(Optimizer):
|
|||
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
|
||||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' but not in any group will use default learning rate and default weight
|
||||
decay.
|
||||
|
||||
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
|
||||
Iterable or a Tensor and the dims of the Tensor is 1,
|
||||
use dynamic learning rate, then the i-th step will
|
||||
|
@ -90,13 +97,16 @@ class SGD(Optimizer):
|
|||
>>>
|
||||
>>> #2) Use parameter groups and set different values
|
||||
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'lr': 0.01},
|
||||
>>> {'params': no_conv_params}]
|
||||
>>> bias_params = list(filter(lambda x: 'bias' in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
>>> {'params': bias_params, 'lr': 0.01},
|
||||
>>> {'order_params': net.trainable_params()}]
|
||||
>>> opt = nn.SGD(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> # the conv_params's parameters will use a learning rate of 0.01 and a weight decay of 0.01
|
||||
>>> # the no_cov_params's parameters don't set learning and weight decay. So they will use a
|
||||
>>> # learning rate of 0.1 and a weight decay of 0.0.
|
||||
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
|
||||
>>> # The bias_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
>>> # The parameters which in the value of 'order_params' but not in any group will use a learning rate
|
||||
>>> # of default value 0.1 and a weight decay of default value 0.0.
|
||||
>>>
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim)
|
||||
|
|
|
@ -13,6 +13,8 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Dataset help for minddata dataset"""
|
||||
import math
|
||||
|
||||
from mindspore._checkparam import check_bool
|
||||
from .. import context
|
||||
from .parallel_utils import ParallelMode
|
||||
|
@ -104,10 +106,10 @@ class _DatasetIter:
|
|||
loop_count = 1
|
||||
if hasattr(dataset, '__loop_size__'):
|
||||
loop_size = dataset.__loop_size__
|
||||
if dataset.get_dataset_size() % loop_size != 0:
|
||||
if loop_size <= dataset.get_dataset_size() and dataset.get_dataset_size() % loop_size != 0:
|
||||
raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
|
||||
f'loop_size {loop_size} are not matched.')
|
||||
loop_count = int(dataset.get_dataset_size() / loop_size)
|
||||
loop_count = math.ceil(dataset.get_dataset_size() / loop_size)
|
||||
return loop_count
|
||||
|
||||
|
||||
|
|
|
@ -60,8 +60,9 @@ def test_group_lr():
|
|||
default_lr = 0.1
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'lr': conv_lr},
|
||||
{'params': no_conv_params}]
|
||||
group_params = [{'params': no_conv_params},
|
||||
{'params': conv_params, 'lr': conv_lr},
|
||||
{'order_params': net.trainable_params()}]
|
||||
net.set_train()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
|
||||
|
@ -69,12 +70,15 @@ def test_group_lr():
|
|||
assert opt.is_group is True
|
||||
assert opt.is_group_lr is True
|
||||
assert opt.dynamic_lr is False
|
||||
for lr, param in zip(opt.learning_rate, opt.parameters):
|
||||
assert opt.is_group_params_ordered is True
|
||||
for lr, param, order_param in zip(opt.learning_rate, opt.parameters, net.trainable_params()):
|
||||
if param in conv_params:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(conv_lr, mstype.float32).asnumpy())
|
||||
else:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(default_lr, mstype.float32).asnumpy())
|
||||
|
||||
assert param.name == order_param.name
|
||||
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
train_network = TrainOneStepCell(net_with_loss, opt)
|
||||
_executor.compile(train_network, inputs, label)
|
||||
|
@ -89,20 +93,24 @@ def test_group_dynamic_1():
|
|||
default_lr = (0.1, 0.2, 0.3)
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'lr': conv_lr},
|
||||
{'params': no_conv_params}]
|
||||
group_params = [{'params': no_conv_params},
|
||||
{'params': conv_params, 'lr': conv_lr},
|
||||
{'order_params': net.trainable_params()}]
|
||||
net.set_train()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
|
||||
opt = Momentum(group_params, learning_rate=default_lr, momentum=0.9)
|
||||
assert opt.is_group is True
|
||||
assert opt.dynamic_lr is True
|
||||
for lr, param in zip(opt.learning_rate, opt.parameters):
|
||||
assert opt.is_group_params_ordered is True
|
||||
for lr, param, order_param in zip(opt.learning_rate, opt.parameters, net.trainable_params()):
|
||||
if param in conv_params:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(np.array([conv_lr] * 3).astype(np.float32)).asnumpy())
|
||||
else:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(np.array(list(default_lr)).astype(np.float32)).asnumpy())
|
||||
|
||||
assert param.name == order_param.name
|
||||
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
train_network = TrainOneStepCell(net_with_loss, opt)
|
||||
_executor.compile(train_network, inputs, label)
|
||||
|
@ -127,9 +135,9 @@ def test_group_dynamic_2():
|
|||
assert opt.dynamic_lr is True
|
||||
for lr, param in zip(opt.learning_rate, opt.parameters):
|
||||
if param in conv_params:
|
||||
assert np.all(lr.data == Tensor(np.array(list(conv_lr)).astype(np.float32)))
|
||||
assert np.all(lr.data.asnumpy() == Tensor(np.array(list(conv_lr)).astype(np.float32)).asnumpy())
|
||||
else:
|
||||
assert np.all(lr.data == Tensor(np.array([default_lr] * 3).astype(np.float32)))
|
||||
assert np.all(lr.data.asnumpy() == Tensor(np.array([default_lr] * 3).astype(np.float32)).asnumpy())
|
||||
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
train_network = TrainOneStepCell(net_with_loss, opt)
|
||||
|
@ -180,15 +188,18 @@ def test_weight_decay():
|
|||
default_weight_decay = 0.0
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'weight_decay': conv_weight_decay},
|
||||
{'params': no_conv_params}]
|
||||
group_params = [{'params': no_conv_params},
|
||||
{'params': conv_params, 'weight_decay': conv_weight_decay},
|
||||
{'order_params': net.trainable_params()}]
|
||||
net.set_train()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
|
||||
opt = SGD(group_params, learning_rate=0.1, weight_decay=default_weight_decay)
|
||||
assert opt.is_group is True
|
||||
assert opt.is_group_lr is False
|
||||
for weight_decay, decay_flags, param in zip(opt.weight_decay, opt.decay_flags, opt.parameters):
|
||||
assert opt.is_group_params_ordered is True
|
||||
for weight_decay, decay_flags, param, order_param in zip(
|
||||
opt.weight_decay, opt.decay_flags, opt.parameters, net.trainable_params()):
|
||||
if param in conv_params:
|
||||
assert weight_decay == conv_weight_decay
|
||||
assert decay_flags is True
|
||||
|
@ -196,6 +207,8 @@ def test_weight_decay():
|
|||
assert weight_decay == default_weight_decay
|
||||
assert decay_flags is False
|
||||
|
||||
assert param.name == order_param.name
|
||||
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
train_network = TrainOneStepCell(net_with_loss, opt)
|
||||
_executor.compile(train_network, inputs, label)
|
||||
|
@ -233,6 +246,19 @@ def test_get_lr_parameter_with_group():
|
|||
assert lr.name == 'lr_' + param.name
|
||||
|
||||
|
||||
def test_get_lr_parameter_with_order_group():
|
||||
net = LeNet5()
|
||||
conv_lr = 0.1
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'lr': conv_lr},
|
||||
{'order_params': net.trainable_params()}]
|
||||
opt = SGD(group_params)
|
||||
assert opt.is_group_lr is True
|
||||
for param in opt.parameters:
|
||||
lr = opt.get_lr_parameter(param)
|
||||
assert lr.name == 'lr_' + param.name
|
||||
|
||||
|
||||
def test_get_lr_parameter_with_no_group():
|
||||
net = LeNet5()
|
||||
conv_weight_decay = 0.8
|
||||
|
@ -250,3 +276,125 @@ def test_get_lr_parameter_with_no_group():
|
|||
params_error = [1, 2, 3]
|
||||
with pytest.raises(TypeError):
|
||||
opt.get_lr_parameter(params_error)
|
||||
|
||||
|
||||
def test_order_params_lr():
|
||||
net = LeNet5()
|
||||
conv_lr = 0.01
|
||||
default_lr = 0.1
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'lr': conv_lr},
|
||||
{'order_params': net.trainable_params()}]
|
||||
opt = SGD(group_params, learning_rate=default_lr)
|
||||
assert opt.is_group is True
|
||||
assert opt.is_group_lr is True
|
||||
assert opt.is_group_params_ordered is True
|
||||
for lr, param, order_param in zip(opt.learning_rate, opt.parameters, net.trainable_params()):
|
||||
if param in conv_params:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(conv_lr, mstype.float32).asnumpy())
|
||||
else:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(default_lr, mstype.float32).asnumpy())
|
||||
|
||||
assert param.name == order_param.name
|
||||
assert lr.name == 'lr_' + param.name
|
||||
|
||||
|
||||
def test_order_params_weight_decay():
|
||||
net = LeNet5()
|
||||
conv_weight_decay = 0.01
|
||||
default_wd = 0.0
|
||||
default_lr = 0.1
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'weight_decay': conv_weight_decay},
|
||||
{'order_params': net.trainable_params()}]
|
||||
opt = SGD(group_params, learning_rate=default_lr, weight_decay=default_wd)
|
||||
assert opt.is_group is True
|
||||
assert opt.is_group_lr is False
|
||||
assert opt.is_group_params_ordered is True
|
||||
assert opt.learning_rate.name == "learning_rate"
|
||||
assert np.all(opt.learning_rate.data.asnumpy() == Tensor(default_lr, mstype.float32).asnumpy())
|
||||
for weight_decay, decay_flags, param, order_param in zip(
|
||||
opt.weight_decay, opt.decay_flags, opt.parameters, net.trainable_params()):
|
||||
if param in conv_params:
|
||||
assert weight_decay == conv_weight_decay
|
||||
assert decay_flags is True
|
||||
else:
|
||||
assert weight_decay == default_wd
|
||||
assert decay_flags is False
|
||||
assert param.name == order_param.name
|
||||
|
||||
|
||||
def test_order_params_all_1():
|
||||
net = LeNet5()
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
bias_params = list(filter(lambda x: 'bias' in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
{'params': bias_params, 'lr': 0.01},
|
||||
{'order_params': net.trainable_params()}]
|
||||
opt = SGD(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
assert opt.is_group is True
|
||||
assert opt.is_group_lr is True
|
||||
assert opt.is_group_params_ordered is True
|
||||
for weight_decay, decay_flags, lr, param, order_param in zip(
|
||||
opt.weight_decay, opt.decay_flags, opt.learning_rate, opt.parameters, net.trainable_params()):
|
||||
if param in conv_params:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(0.1, mstype.float32).asnumpy())
|
||||
assert weight_decay == 0.01
|
||||
assert decay_flags is True
|
||||
elif param in bias_params:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(0.01, mstype.float32).asnumpy())
|
||||
assert weight_decay == 0.0
|
||||
assert decay_flags is False
|
||||
else:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(0.1, mstype.float32).asnumpy())
|
||||
assert weight_decay == 0.0
|
||||
assert decay_flags is False
|
||||
|
||||
assert param.name == order_param.name
|
||||
assert lr.name == 'lr_' + param.name
|
||||
|
||||
|
||||
def test_order_params_all_2():
|
||||
net = LeNet5()
|
||||
conv_weight_decay = 0.01
|
||||
fc1_lr = (0.5, 0.4, 0.3)
|
||||
default_lr = 0.1
|
||||
default_wd = 0.0
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
fc1_params = list(filter(lambda x: 'fc1' in x.name, net.trainable_params()))
|
||||
group_params = [{'params': fc1_params, 'lr': fc1_lr},
|
||||
{'params': conv_params, 'weight_decay': conv_weight_decay},
|
||||
{'order_params': net.trainable_params()}]
|
||||
opt = SGD(group_params, learning_rate=default_lr, weight_decay=default_wd)
|
||||
assert opt.is_group is True
|
||||
assert opt.is_group_lr is True
|
||||
assert opt.is_group_params_ordered is True
|
||||
for weight_decay, decay_flags, lr, param, order_param in zip(
|
||||
opt.weight_decay, opt.decay_flags, opt.learning_rate, opt.parameters, net.trainable_params()):
|
||||
if param in conv_params:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(np.array([default_lr] * 3), mstype.float32).asnumpy())
|
||||
assert weight_decay == conv_weight_decay
|
||||
assert decay_flags is True
|
||||
elif param in fc1_params:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(fc1_lr, mstype.float32).asnumpy())
|
||||
assert weight_decay == default_wd
|
||||
assert decay_flags is False
|
||||
else:
|
||||
assert np.all(lr.data.asnumpy() == Tensor(np.array([default_lr] * 3), mstype.float32).asnumpy())
|
||||
assert weight_decay == default_wd
|
||||
assert decay_flags is False
|
||||
|
||||
assert param.name == order_param.name
|
||||
assert lr.name == 'lr_' + param.name
|
||||
|
||||
|
||||
def test_get_order_params_with_not_include():
|
||||
net = LeNet5()
|
||||
conv_weight_decay = 0.8
|
||||
|
||||
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
group_params = [{'params': conv_params, 'weight_decay': conv_weight_decay},
|
||||
{'order_params': no_conv_params}]
|
||||
with pytest.raises(ValueError):
|
||||
SGD(group_params)
|
Loading…
Reference in New Issue