!1868 Enhance insert memcpy for hccl op

Merge pull request !1868 from huanghui/insert-memcpy-async-pass
This commit is contained in:
mindspore-ci-bot 2020-06-11 09:55:32 +08:00 committed by Gitee
commit 81ba3b1b99
10 changed files with 451 additions and 192 deletions

View File

@ -81,7 +81,7 @@
#include "pre_activate/ascend/buffer_fusion/reduce_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/segment_eltwise_fusion_pass.h"
#include "pre_activate/ascend/format_type/deal_ref_trans_and_cast.h"
#include "pre_activate/ascend/enhancer/add_memcpy_async.h"
#include "pre_activate/ascend/enhancer/insert_memcpy_async_for_hccl_op.h"
#include "pre_activate/ascend/enhancer/insert_pad_for_nms_with_mask.h"
#include "pre_activate/ascend/format_type/insert_transdata_for_runop.h"
#include "pre_activate/ascend/enhancer/getnext_memcpy_elimination.h"
@ -227,7 +227,6 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
ir_fusion_pm->AddPass(std::make_shared<FusedBatchNormMixPrecisionFusion0>());
ir_fusion_pm->AddPass(std::make_shared<FusedBatchNormMixPrecisionFusion1>());
}
ir_fusion_pm->AddPass(std::make_shared<AddMemcpyAsync>());
ir_fusion_pm->AddPass(std::make_shared<InsertPadForNMSWithMask>());
if (context_ptr->ir_fusion_flag()) {
AddAscendBackendOptionalIRFusion(ir_fusion_pm.get());
@ -238,6 +237,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>());
ir_fusion_pm->AddPass(std::make_shared<EraseVisitAttr>());
}
ir_fusion_pm->AddPass(std::make_shared<InsertMemcpyAsyncForHcclOp>());
optimizer->AddPassManager(ir_fusion_pm);
(void)optimizer->Optimize(kernel_graph);
kernel_graph->SetExecOrderByDefault();

View File

@ -22,6 +22,8 @@
#include "device/ascend/kernel_select_ascend.h"
#include "kernel/kernel_query.h"
#include "kernel/tbe/tbe_kernel_select.h"
#include "kernel/oplib/oplib.h"
#include "session/anf_runtime_algorithm.h"
namespace mindspore {
namespace opt {
@ -56,6 +58,17 @@ class KernelQuery {
std::vector<std::shared_ptr<kernel::KernelBuildInfo>> *kernel_info_list) {
kernel::KernelQuery(kernel_node, kernel_info_list);
}
virtual bool IsTbeRef(const AnfNodePtr &node) {
MS_EXCEPTION_IF_NULL(node);
if (!node->isa<CNode>()) {
return false;
}
auto op_info = mindspore::kernel::OpLib::FindOp(AnfAlgo::GetCNodeName(node), kernel::kTBE);
if (op_info != nullptr) {
return op_info->is_ref();
}
return false;
}
};
using KernelQueryPtr = std::shared_ptr<KernelQuery>;
void RefreshKernelBuildInfo(const std::string &input_format, const std::string &output_format, const TypeId device_type,

View File

@ -1,75 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/enhancer/add_memcpy_async.h"
#include <vector>
#include "utils/utils.h"
#include "session/anf_runtime_algorithm.h"
#include "optimizer/opt.h"
#include "pre_activate/ascend/ascend_helper.h"
namespace mindspore {
namespace opt {
namespace {
bool InputIsParameterOrValueNode(const AnfNodePtr &node) {
MS_EXCEPTION_IF_NULL(node);
auto kernel_with_index = AnfAlgo::VisitKernelWithReturnType(node, 0, true);
return kernel_with_index.first->isa<Parameter>() || kernel_with_index.first->isa<ValueNode>();
}
const AnfNodePtr AddMemcpyAsyncIfInputIsUsedByOthers(const FuncGraphPtr &graph, const CNodePtr &node) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
const std::vector<AnfNodePtr> &inputs = node->inputs();
bool replace = false;
if (inputs.empty()) {
MS_LOG(EXCEPTION) << "node[" + AnfAlgo::GetCNodeName(node) + "]'s inputs is empty";
}
std::vector<AnfNodePtr> new_inputs = {inputs[0]};
for (size_t i = 1; i < inputs.size(); ++i) {
auto input = node->input(i);
if (manager->node_users().find(input) == manager->node_users().end()) {
MS_LOG(EXCEPTION) << "node has no output in manager";
}
// when input is used by others or is a parameter or is a value node, insert a memcpy_async
if (manager->node_users()[input].size() > 1 || InputIsParameterOrValueNode(input)) {
replace = true;
new_inputs.push_back(CreateMemcpyAsyncOp(graph, input));
} else {
new_inputs.push_back(input);
}
}
CNodePtr new_node = std::make_shared<CNode>(*node);
new_node->set_inputs(new_inputs);
return replace ? new_node : nullptr;
}
} // namespace
const AnfNodePtr AddMemcpyAsync::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
const EquivPtr &) const {
if (func_graph == nullptr || node == nullptr || !node->isa<CNode>()) {
return nullptr;
}
auto cnode = node->cast<CNodePtr>();
if (!AnfAlgo::IsCommunicationOp(node)) {
return nullptr;
}
return AddMemcpyAsyncIfInputIsUsedByOthers(func_graph, cnode);
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,135 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/enhancer/insert_memcpy_async_for_hccl_op.h"
#include <vector>
#include <set>
#include <string>
#include "utils/utils.h"
#include "session/anf_runtime_algorithm.h"
#include "optimizer/opt.h"
#include "pre_activate/ascend/ascend_helper.h"
namespace mindspore {
namespace opt {
namespace {
// insert memcpy for some cnode even if not a Ref cnode
const std::set<std::string> kNeedInsertMemcpyOpSet = {kLambNextMVOpName, kLambNextMVWithDecayOpName,
kLambUpdateWithLROpName};
bool IsParameterOrValueNode(const AnfNodePtr &node) {
MS_EXCEPTION_IF_NULL(node);
auto kernel_with_index = AnfAlgo::VisitKernelWithReturnType(node, 0, true);
return kernel_with_index.first->isa<Parameter>() || kernel_with_index.first->isa<ValueNode>();
}
void TransferControl(const CNodePtr &hccl_node, const AnfNodePtr &memcpy_async, const FuncGraphPtr &graph) {
MS_EXCEPTION_IF_NULL(hccl_node);
MS_EXCEPTION_IF_NULL(memcpy_async);
MS_EXCEPTION_IF_NULL(graph);
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
auto &node_users = manager->node_users();
auto iter = node_users.find(hccl_node);
if (iter == node_users.end()) {
MS_LOG(EXCEPTION) << "node has no output in manager";
}
// find hccl_node's output which is a control depend
for (const auto &node_index : iter->second) {
AnfNodePtr output = node_index.first;
int output_index = node_index.second;
if (AnfAlgo::CheckPrimitiveType(output, prim::kPrimControlDepend)) {
CNodePtr control_depend = output->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(control_depend);
std::vector<AnfNodePtr> new_inputs;
for (size_t i = 0; i < control_depend->size(); ++i) {
if (i == IntToSize(output_index)) {
new_inputs.push_back(memcpy_async);
} else {
new_inputs.push_back(control_depend->input(i));
}
}
control_depend->set_inputs(new_inputs);
}
}
}
} // namespace
bool InsertMemcpyAsyncForHcclOp::NeedInsertMemcpy(const FuncGraphPtr &graph, const AnfNodePtr &input) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(input);
// when input is a parameter or is a value node
if (IsParameterOrValueNode(input)) {
return true;
}
// when input is a Ref or some special cnodes
if (kernel_query_->IsTbeRef(input) ||
kNeedInsertMemcpyOpSet.find(AnfAlgo::GetCNodeName(input)) != kNeedInsertMemcpyOpSet.end()) {
return true;
}
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
auto &node_users = manager->node_users();
auto iter = node_users.find(input);
if (iter == node_users.end()) {
MS_LOG(EXCEPTION) << "node has no output in manager";
}
// when input is used by others
if (iter->second.size() > 1) {
return true;
}
return false;
}
void InsertMemcpyAsyncForHcclOp::InsertMemcpyAsync(const FuncGraphPtr &graph, const CNodePtr &hccl_node) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(hccl_node);
if (hccl_node->size() != 2) {
MS_LOG(INFO) << "node[" + AnfAlgo::GetCNodeName(hccl_node) + "]'s inputs size not equal 2";
return;
}
auto input = hccl_node->input(1);
if (NeedInsertMemcpy(graph, input)) {
auto memcpy_async = CreateMemcpyAsyncOp(graph, input);
CNodePtr new_hccl_node = std::make_shared<CNode>(*hccl_node);
new_hccl_node->set_inputs({hccl_node->input(0), memcpy_async});
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
MS_LOG(DEBUG) << "start replace new_hccl_node to old hccl_node";
(void)manager->Replace(hccl_node, new_hccl_node);
MS_LOG(DEBUG) << "end replace";
// transer hccl op's control to the memcpy_async
TransferControl(new_hccl_node, memcpy_async, graph);
}
}
const AnfNodePtr InsertMemcpyAsyncForHcclOp::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
const EquivPtr &) const {
if (func_graph == nullptr || node == nullptr || !node->isa<CNode>()) {
return nullptr;
}
auto cnode = node->cast<CNodePtr>();
if (!AnfAlgo::IsCommunicationOp(node)) {
return nullptr;
}
InsertMemcpyAsync(func_graph, cnode);
return nullptr;
}
} // namespace opt
} // namespace mindspore

View File

@ -13,19 +13,28 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_ENHANCER_ADD_MEMCPY_ASYNC_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_ENHANCER_ADD_MEMCPY_ASYNC_H_
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_ENHANCER_INSERT_MEMCPY_ASYNC_FOR_HCCL_OP_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_ENHANCER_INSERT_MEMCPY_ASYNC_FOR_HCCL_OP_H_
#include <memory>
#include "pre_activate/common/optimizer.h"
#include "pre_activate/ascend/ascend_helper.h"
namespace mindspore {
namespace opt {
class AddMemcpyAsync : public PatternProcessPass {
class InsertMemcpyAsyncForHcclOp : public PatternProcessPass {
public:
explicit AddMemcpyAsync(bool multigraph = true) : PatternProcessPass("add_memcpy_async", multigraph) {}
~AddMemcpyAsync() override = default;
explicit InsertMemcpyAsyncForHcclOp(bool multigraph = true)
: PatternProcessPass("insert_memcpy_async_for_hccl_op", multigraph),
kernel_query_(std::make_shared<KernelQuery>()) {}
~InsertMemcpyAsyncForHcclOp() override = default;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
private:
void InsertMemcpyAsync(const FuncGraphPtr &graph, const CNodePtr &hccl_node) const;
bool NeedInsertMemcpy(const FuncGraphPtr &graph, const AnfNodePtr &input) const;
KernelQueryPtr kernel_query_;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_ENHANCER_ADD_MEMCPY_ASYNC_H_
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_ENHANCER_INSERT_MEMCPY_ASYNC_FOR_HCCL_OP_H_

View File

@ -56,7 +56,7 @@ bool GetBatchNormOutputs(const FuncGraphPtr &func_graph, const AnfNodePtr &bn, s
bn_outputs->push_back(output);
output_num++;
}
return output_num > kBatchNormLeastOutputNum;
return output_num >= kBatchNormLeastOutputNum;
}
AnfNodePtr CreateBNTrainingReduce(const FuncGraphPtr &func_graph, const AnfNodePtr &bn) {

View File

@ -1,58 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "session/anf_runtime_algorithm.h"
#include "operator/ops.h"
#include "ir/tensor.h"
#include "debug/anf_ir_dump.h"
#include "utils/utils.h"
#include "kernel/kernel_build_info.h"
#include "pre_activate/common/optimizer.h"
#include "pre_activate/ascend/enhancer/add_memcpy_async.h"
namespace mindspore {
namespace opt {
class TestHWAddMemcpyAsync : public BackendCommon {
public:
TestHWAddMemcpyAsync() : get_py_fun_("gtest_input.pre_activate.add_memcpy_async", true) {}
public:
UT::PyFuncGraphFetcher get_py_fun_;
};
TEST_F(TestHWAddMemcpyAsync, test_add_memcpy_async) {
get_py_fun_.SetDoResolve(true);
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_add_memcpy_async", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int> shp_x{1, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract};
auto func_graph = GetKernelGraph(g, args_spec_list);
EXPECT_NE(func_graph, nullptr);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto pass = std::make_shared<opt::AddMemcpyAsync>();
pm->AddPass(pass);
optimizer->AddPassManager(pm);
auto new_graph = optimizer->Optimize(func_graph);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_add_memcpy_async", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,165 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "session/anf_runtime_algorithm.h"
#include "operator/ops.h"
#include "ir/tensor.h"
#include "debug/anf_ir_dump.h"
#include "utils/utils.h"
#include "kernel/kernel_build_info.h"
#include "pre_activate/common/optimizer.h"
#define private public
#define protected public
#include "pre_activate/ascend/enhancer/insert_memcpy_async_for_hccl_op.h"
#undef private
#undef protected
namespace mindspore {
namespace opt {
class TestHWInsertMemcpyForHccl : public BackendCommon {
public:
TestHWInsertMemcpyForHccl() : get_py_fun_("gtest_input.pre_activate.insert_memcpy_async_for_hccl_op", true) {}
~TestHWInsertMemcpyForHccl() override = default;
public:
UT::PyFuncGraphFetcher get_py_fun_;
};
class MockInsertMemcpyForHcclKernelQuery : public KernelQuery {
public:
MockInsertMemcpyForHcclKernelQuery() = default;
~MockInsertMemcpyForHcclKernelQuery() override = default;
bool IsTbeRef(const AnfNodePtr &node) override {
MS_EXCEPTION_IF_NULL(node);
auto cnode = node->cast<CNodePtr>();
if (cnode == nullptr) {
return false;
}
auto name = AnfAlgo::GetCNodeName(cnode);
return name == "ApplyMomentum";
}
};
TEST_F(TestHWInsertMemcpyForHccl, test_cond1) {
get_py_fun_.SetDoResolve(true);
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond1", "before1");
ASSERT_TRUE(g != nullptr);
std::vector<int> shp_x{1, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract};
auto kg = GetKernelGraph(g, args_spec_list);
EXPECT_NE(kg, nullptr);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto pass = std::make_shared<opt::InsertMemcpyAsyncForHcclOp>();
pass->kernel_query_ = std::make_shared<MockInsertMemcpyForHcclKernelQuery>();
pm->AddPass(pass);
optimizer->AddPassManager(pm);
auto new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond1", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
TEST_F(TestHWInsertMemcpyForHccl, test_cond1_no_insert) {
get_py_fun_.SetDoResolve(true);
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond1", "before2");
ASSERT_TRUE(g != nullptr);
std::vector<int> shp_x{1, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract};
auto kg = GetKernelGraph(g, args_spec_list);
EXPECT_NE(kg, nullptr);
auto origin_graph = std::make_shared<session::KernelGraph>(*kg);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto pass = std::make_shared<opt::InsertMemcpyAsyncForHcclOp>();
pm->AddPass(pass);
optimizer->AddPassManager(pm);
auto new_graph = optimizer->Optimize(kg);
EXPECT_TRUE(CheckEqualGraph(origin_graph, new_graph));
}
TEST_F(TestHWInsertMemcpyForHccl, test_cond2) {
get_py_fun_.SetDoResolve(true);
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond2", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int> shp_x{1, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract};
auto kg = GetKernelGraph(g, args_spec_list);
EXPECT_NE(kg, nullptr);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto pass = std::make_shared<opt::InsertMemcpyAsyncForHcclOp>();
pass->kernel_query_ = std::make_shared<MockInsertMemcpyForHcclKernelQuery>();
pm->AddPass(pass);
optimizer->AddPassManager(pm);
auto new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond2", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
TEST_F(TestHWInsertMemcpyForHccl, test_cond3) {
get_py_fun_.SetDoResolve(true);
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond3", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int> shp_x{1, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract, x_abstract, x_abstract, x_abstract, x_abstract};
auto kg = GetKernelGraph(g, args_spec_list);
EXPECT_NE(kg, nullptr);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto pass = std::make_shared<opt::InsertMemcpyAsyncForHcclOp>();
pass->kernel_query_ = std::make_shared<MockInsertMemcpyForHcclKernelQuery>();
pm->AddPass(pass);
optimizer->AddPassManager(pm);
auto new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond3", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
TEST_F(TestHWInsertMemcpyForHccl, test_cond4) {
get_py_fun_.SetDoResolve(true);
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond4", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int> shp_x{1, 64, 112, 112};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract, x_abstract, x_abstract, x_abstract, x_abstract};
auto kg = GetKernelGraph(g, args_spec_list);
EXPECT_NE(kg, nullptr);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto pass = std::make_shared<opt::InsertMemcpyAsyncForHcclOp>();
pass->kernel_query_ = std::make_shared<MockInsertMemcpyForHcclKernelQuery>();
pm->AddPass(pass);
optimizer->AddPassManager(pm);
auto new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond4", "after");
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
}
} // namespace opt
} // namespace mindspore

View File

@ -1,50 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import Primitive
from mindspore.ops import operations as P
all_reduce = P.AllReduce()
memcpy_async = Primitive('memcpy_async')
make_tuple = Primitive('make_tuple')
tuple_getitem = Primitive('tuple_getitem')
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_add_memcpy_async(tag):
fns = FnDict()
@fns
def before(x):
res = all_reduce(x)
return make_tuple(x, res)
@fns
def after(x):
res = memcpy_async(x)
res = all_reduce(res)
return make_tuple(make_tuple(x, res))
return fns[tag]

View File

@ -0,0 +1,120 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import Primitive
from mindspore.ops import operations as P
all_reduce = P.AllReduce()
memcpy_async = Primitive('memcpy_async')
make_tuple = Primitive('make_tuple')
tuple_getitem = Primitive('tuple_getitem')
apply_momentun = P.ApplyMomentum()
control_depend = P.ControlDepend()
relu = P.ReLU()
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_insert_memcpy_async_for_hccl_op_cond1(tag):
fns = FnDict()
@fns
def before1(x):
res1 = relu(x)
res2 = all_reduce(res1)
return make_tuple(res1, res2)
@fns
def before2(x):
res1 = relu(x)
res2 = all_reduce(res1)
return res2
@fns
def after(x):
res1 = relu(x)
res2 = memcpy_async(res1)
res2 = all_reduce(res2)
return make_tuple(make_tuple(res1, res2))
return fns[tag]
def test_insert_memcpy_async_for_hccl_op_cond2(tag):
fns = FnDict()
@fns
def before(x):
res = all_reduce(x)
return res
@fns
def after(x):
res = memcpy_async(x)
res = all_reduce(res)
return make_tuple(res)
return fns[tag]
def test_insert_memcpy_async_for_hccl_op_cond3(tag):
fns = FnDict()
@fns
def before(a, b, c, d, e):
res = apply_momentun(a, b, c, d, e)
res = all_reduce(res)
return res
@fns
def after(a, b, c, d, e):
res = apply_momentun(a, b, c, d, e)
res = memcpy_async(res)
res = all_reduce(res)
return make_tuple(res)
return fns[tag]
def test_insert_memcpy_async_for_hccl_op_cond4(tag):
fns = FnDict()
@fns
def before(a, b, c, d, e):
res1 = apply_momentun(a, b, c, d, e)
res2 = all_reduce(a)
res = control_depend(res1, res2)
res = make_tuple(res, res2)
return res
@fns
def after(a, b, c, d, e):
res1 = apply_momentun(a, b, c, d, e)
res2 = memcpy_async(a)
res3 = all_reduce(res2)
res = control_depend(res1, res2)
res = make_tuple(res, res3)
return make_tuple(res)
return fns[tag]