!11942 [MS][LITE][DEVELOP]support deconv parser

From: @cjh9368
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-02-02 10:24:32 +08:00 committed by Gitee
commit 7ff981cd19
5 changed files with 163 additions and 11 deletions

View File

@ -278,6 +278,7 @@ FuncGraphPtr AnfTransform::TransformSingleFuncGraph(const FuncGraphPtr &old_grap
MS_LOG(ERROR) << "Add fusion pass failed.";
return nullptr;
}
status = AddGraphPass(optimizer, config);
if (status != RET_OK) {
MS_LOG(ERROR) << "Add graph pass failed.";

View File

@ -0,0 +1,107 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_deconv_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
#include "tools/converter/parser/tf/tf_util.h"
namespace mindspore {
namespace lite {
STATUS TFDeconvParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map, PrimitiveC **primitiveC,
std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF DeConvParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::DeConv2DT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
attr->group = 1;
attr->format = TensorFlowUtils::ParseNodeFormat(tf_op);
std::vector<int64_t> dilations(2);
auto status = ParseDilations(tf_op, attr->format, &dilations);
if (status != RET_OK) {
return status;
}
attr->dilateH = dilations[0];
attr->dilateW = dilations[1];
std::vector<int64_t> strides(2);
status = ParseStrides(tf_op, attr->format, &strides);
if (status != RET_OK) {
return status;
}
attr->strideH = strides[0];
attr->strideW = strides[1];
auto weight_node = GetConstInputNode(tf_node_map, tf_op.input(1));
if (weight_node != nullptr) {
std::vector<int64_t> kernels(4);
status = ParseKernels(*weight_node, attr->format, &kernels);
if (status != RET_OK) {
return status;
}
attr->kernelH = kernels[0];
attr->kernelW = kernels[1];
attr->channelIn = kernels[2];
attr->channelOut = kernels[3];
} else {
attr->kernelH = -1;
attr->kernelW = -1;
attr->channelIn = -1;
attr->channelOut = -1;
MS_LOG(WARNING) << "parsing of kernelH/W channelIn/Out is delayed";
}
status = ParsePadMode(tf_op, &attr->padMode);
if (status != RET_OK) {
return status;
}
primitive->value.type = schema::PrimitiveType_DeConv2D;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
status = AddOpInput(tf_op, 2, inputs);
if (status != RET_OK) {
return status;
}
status = AddOpInput(tf_op, 1, inputs); // weights
return status;
}
TFNodeRegistrar g_tf_deconv_parser("Conv2DBackpropInput", new TFDeconvParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,36 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_DECONV_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_DECONV_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_conv_base_parser.h"
namespace mindspore {
namespace lite {
class TFDeconvParser : public TFConvBaseParser {
public:
TFDeconvParser() = default;
~TFDeconvParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_DECONV_PARSER_H_

View File

@ -221,16 +221,22 @@ void ConvTransformFusion::CalNewWeightTensor(const CNodePtr &conv_node, const Pa
delete[] tmp_weight_data;
return;
}
auto group = primc->GetGroup();
auto cin_group = weight_tensor->tensor_shape()[0] / group;
int area_size = weight_tensor->tensor_shape()[2] * weight_tensor->tensor_shape()[3];
int cout_size = kernel_num * area_size;
for (int k = 0; k < cin_group; ++k) {
for (int i = 0; i < kernel_num; ++i) {
auto row_addr = weight_data + k * cout_size + i * area_size;
auto new_row_addr = tmp_weight_data + k * cout_size + i * area_size;
for (int j = 0; j < area_size; j++) {
new_row_addr[j] = row_addr[j] * trans_scale[i];
if (this->fmk_type_ == lite::converter::FmkType_TF) {
for (int i = 0; i < weight_shape_size; i++) {
tmp_weight_data[i] = weight_data[i] * trans_scale[i % kernel_num];
}
} else {
auto group = primc->GetGroup();
auto cin_group = weight_tensor->tensor_shape()[0] / group;
int area_size = weight_tensor->tensor_shape()[2] * weight_tensor->tensor_shape()[3];
int cout_size = kernel_num * area_size;
for (int k = 0; k < cin_group; ++k) {
for (int i = 0; i < kernel_num; ++i) {
auto row_addr = weight_data + k * cout_size + i * area_size;
auto new_row_addr = tmp_weight_data + k * cout_size + i * area_size;
for (int j = 0; j < area_size; j++) {
new_row_addr[j] = row_addr[j] * trans_scale[i];
}
}
}
}

View File

@ -193,6 +193,8 @@ lite::STATUS WeightFormatHardCodePass::HardCodeTF(const AnfNodePtr &conv_node,
param_value->set_format(schema::Format::Format_HWCK);
} else if (op_type == schema::PrimitiveType_DepthwiseConv2D) {
param_value->set_format(schema::Format::Format_HWKC);
} else if (op_type == schema::PrimitiveType_DeConv2D) {
param_value->set_format(schema::Format::Format_HWCK);
} else {
MS_LOG(ERROR) << "Unsupported opType: " << EnumNamePrimitiveType(op_type)
<< ", node: " << conv_node->fullname_with_scope();
@ -248,7 +250,7 @@ bool WeightFormatHardCodePass::Run(const FuncGraphPtr &graph) {
return false;
}
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "schema::Format hardCode faild: " << status << ", node: " << node->fullname_with_scope();
MS_LOG(ERROR) << "Format hard code failed: " << status << ", node: " << node->fullname_with_scope();
return false;
}
}